
cuRRay: CUDA-Raytracer for Light
Rays in relativistic Kerr-Newman

Spacetime

Translation of the 2018 Swiss national contest (SJF) paper

Sébastien C. Garmier

January 3, 2019

Expert SJF

Marcel Balsiger

Originally submitted in January 2017 as Matura Project to
Kantonsschule Wohlen AG, Switzerland

Supervision Kantonsschule Wohlen

Adrien Cornaz, Ph.D.
Jan-Mark Iniotakis, Ph.D.

Contents

Abstract iv

Introduction v

Notation Conventions vii

1 General Relativity 1
1.1 Special Relativity . 1
1.2 Equivalence Principle . 2
1.3 Curved Spacetime . 3
1.4 Tensors . 5
1.5 Coordinates . 7
1.6 Metric Tensor . 7
1.7 Geodesics . 9
1.8 Riemann Tensor . 11
1.9 Stress-Energy-Momentum Tensor 12
1.10 Einstein Field Equations . 13

2 Black Holes 14
2.1 Schwarzschild Metric . 14
2.2 Kerr-Newman Metric . 15
2.3 Killing Vector Fields and Constants of Motion 21

2.3.1 Killing Vector Fields in Kerr-Newman Spacetime 21
2.3.2 Geodesic Equations of Kerr-Newman Spacetime 22

3 Light 23
3.1 The Electromagnetic Field . 23
3.2 Electromagnetic Waves . 24
3.3 Photons . 25
3.4 Deflection of Light Rays . 25
3.5 Gravitational Redshift . 25

4 Overview of cuRRay 27
4.1 Functionality . 27
4.2 System Requirements . 28
4.3 Used Code Libraries . 29

i

CONTENTS ii

4.4 Quick Start Guide . 29

5 Program Structure 30
5.1 Input and Output . 30
5.2 Parallel Code Execution . 30

5.2.1 CPU . 31
5.2.2 GPU . 32

6 Raytracing 34
6.1 Grid Layout . 34
6.2 Frames . 35
6.3 Initial Value Problem . 36
6.4 Computation of the Initial Velocity 36
6.5 Fourth Order Runge-Kutta Procedure 38
6.6 Step Size Control . 41
6.7 Monitoring the Velocity Vector 41
6.8 Break Conditions . 42
6.9 Redshift . 42
6.10 Starry Sky . 43
6.11 Complete Pixel Data . 44

7 Results 45
7.1 Schwarzschild Black Holes . 45
7.2 Kerr Black Holes . 53
7.3 Reissner-Nordström Black Holes 56

8 Discussion 58
8.1 Reliability of cuRRay . 58
8.2 Efficiency of cuRRay . 59
8.3 Outlook . 60
8.4 Existing Software . 60

A First Order Geodesic Equations 61

B Christoffel Symbols of Kerr-Newman Spacetime 63

C Gravitational Redshift in Kerr-Newman Spacetime 66

D Derivation of the Cartesian-BL Transformation 68

E cuRRay: User Manual 73
E.1 Command Line . 73
E.2 System Configuration File (Sysconfig) 75
E.3 Raytracing . 78
E.4 Scene File . 78
E.5 TDR-Timer under Windows . 81

CONTENTS iii

F Git Repository 82

G Compiling cuRRay 83
G.1 General . 83
G.2 Compiling under Windows (Visual Studio) 83
G.3 Compiling under Linux (g++-5) 84

List of Figures 85

List of Listings 86

Literaturverzeichnis 87

Abstract

cuRRay is a CUDA-accelerated raytracer for light rays in Kerr-Newman space-
time. cuRRay was programmed in C++, two versions exist: A CUDA version
making use of the NVIDIA hardware of the system and a CPU version run-
ning on the CPU of the system. The software allows the configuration of scenes
containing a Kerr-Newman black hole (described by mass, angular momentum
and electric charge), an observer and optional objects (spheres, accretion disc,
stars in the background). Using raytracing, images of the scene can be created
from the perspective of the observer.

The images generated by cuRRay allow for two aspects of curved spacetime
to be visualized: the deflection and redshift of light rays by gravity. We show
the algorithms used in the software, as well as images created by the software.
Using the generated images, we discuss the differences between types of black
holes.

iv

Introduction

The general theory of relativity, or simply general relativity, is a theory of grav-
ity. It replaces the classical, Newtonian theory, when the latter loses accuracy
due to high mass-energy densities. General relativity describes gravity as a
consequence of curved spacetime. This idea is made mathematically precise
using differential geometry. The theory was introduced by Albert Einstein in
1915.

It predicts the existence of black holes, regions in spacetime, out of which
nothing can escape due to strong gravity. Black holes can only be observed
indirectly, since not even light can escape out of them. They appear completely
black.

Light of other bodies near a black hole is deviated by the extreme gravita-
tional field. An observer seeing this light would see a heavily distorted image
of the black hole. Such pictures of black holes and bodies around it can be used
to determine the properties of the black hole and the spacetime surrounding
it. D. Psaltis et. al. [PD11.1] for instance use simulated pictures of black holes,
to determine the spectra of gas rotating around the holes.

Gravitation by C. Misner et. al. [MC73.1] and General Relativity by R.
Wald [WR84.1] are modern and standard textbooks which are suitable for a
rigorous introduction into general relativity. They provide the needed basics
to understand the propagation of light in relativistic gravitational fields.

The software cuRRay, acronym for CUDA relativistic Raytracer, was de-
veloped in the context of this project. It simulates trajectories of single pho-
tons, light rays, in relativistic Kerr-Newman spacetime. Kerr-Newman space-
time describes the gravitational field around a rotating, electrically charged
black hole. cuRRay calculates the trajectories of photons arriving at the ob-
server backwards, until an object is hit. That way, the picture seen by the
observer can be reconstructed. This procedure is called raytracing. cuRRay
makes use of NVIDIA® CUDA to efficiently trace multiple photons in parallel
using the graphics hardware.

CUDA by example by J. Sanders et. al. [SJ11.1] and Professional CUDA
C programming by J. Cheng et. al. [CJ14.1] are suited as an introduction to
CUDA programming.

The following goals were pursued: the learning of general relativity and
the coding of the software cuRRay, capable of creating pictures of objects near
black holes. There was no initiative to create a faster or better software than

v

INTRODUCTION vi

existing software. There are two reasons for this thinking. Firstly, the main
goal was to learn general relativity and to apply it to some problem. It was not
planned to use the software beyond this project. Although, given the final state
of the software, it certainly could be employed in further research. Secondly,
it is very hard to compare cuRRay to already existing software, as these are
usually highly specialized.

In the main part we will discuss the necessary theory and explain the
functionality of the software. Finally, we visualize curved spacetime around
black holes using images created by cuRRay and discuss them.

Notation Conventions

Sign Conventions We use the metric signature −+++.
Events and Objects We refer to events using script letters; for instance:
A , B, C , etc. Objects, like observers or bodies, are designated by uppercase,
latin letters.
Tensors We use two different notations for tensors: the coordinate-free nota-
tion and the coordinate-dependent index notation.

Bold letters label tensors including vectors and covectors in coordinate-free
notation. For instance, the divergence of the energy-momentum tensor:

∇ · T = 0. (1)

The indices in this notation are also written in bold characters. They distin-
guish between different tensors of a set. For instance, the basis vectors:

e0, e1, e2, e3. (2)

If the components of a tensor are important, we will use the index notation.
For instance, the contraction of the Riemann-tensor:

R β
αβγ = Rαγ . (3)

Indices of coordinate-dependent tensors indicate, which component of a
tensor is meant. For instance, mass-energy in the local Lorentz frame:

E = T00 . (4)

Indices in Index Notation In index notation, greek indices take on the
values 0 to 3. The index 0 is a temporal index, the indices 1 to 3 are spatial
indices. From time to time we will denote specific values of indices by the letters
for the coordinate bases. Depending on the index, or a combination of indices
respectively, a component is either a time-component, a space-component or a
mixture of the two.

gtt = g00 (5)

for instance, is the metric tensor’s time-time-component. Latin indices only
designate space-components. They take on the values 1 to 3.

vii

NOTATION CONVENTIONS viii

Compact index notation For derivatives we occasionally use the compact
index notation:

∂αS ≡ S,α (6)

and
∇αV

β ≡ V β
;α . (7)

We differentiate by all indices after the comma or the semicolon. If an index,
by which we differentiate, is raised, a multiplication with the metric tensor
after the differentiation is implied.

Einstein notation If not stated otherwise, we make use of the Einstein nota-
tion. We imply a sum over all indices, which occur both covariantly (lowered)
and contravariantly (raised): ∑

α

vαv
α = vαv

α. (8)

Four-vectors If not stated otherwise, we will use the following special rel-
ativistic four-vectors instead of the classical three-dimensional vectors (here,
the components are given in local Minkowski coordinates):

four-position x = (ct, x, y, z)

four-velocity u = dx/dτ

four-acceleration a = dv/dτ

(higher derivatives of x)

four-momentum p = mv

four-force F = dp/dτ

four-current-density j = (cρ, jx, jy, jz)
ρ = charge density;
j = classical current density

Geometrized units We generally use geometrized units. The speed of light
c and the gravitational constant G are set to 1:

c ≡ 1,

G ≡ 1. (9)

Gaussian units In chapter 3 we will use Gaussian units for electromagnetic
fields. That way, all ϵ0’s and µ0’s disappear.

Citations We will label citations using the following scheme: the two upper-
case letters are the initials of the authors first and last name. The two-digit
number are the final digits of the year of publication and a running number
distinguishes between multiple publications of the same author in the same
year. Example: [EA16.1] stands for Einstein, Albert (1916), first publication.

Chapter 1

General Relativity

In this chapter, we will set forth the general theory of relativity. We begin
with a short discussion of special relativity followed by the equivalence princi-
ple, the basic principle upon which general relativity builds. Subsequently we
will discuss the curved world lines of bodies in spacetime and describe them
mathematically. Before finishing the chapter, we will establish the connection
between spacetime curvature and mass-energy by introducing the Einstein
field equations.

1.1 Special Relativity
Special Relativity describes the behaviour of physics as seen by different moving
observers. It was published by Einstein in 1905 [EA05.1].
Postulates Special relativity is based on two postulates: The postulate of
relativity says that the laws of physics must be the same for every inertial
(non-accelerating) observer, the second postulate states that the speed of light
is constant for every such observer. The speed of light c takes on the value

c = 299792458 m/s. (1.1.1)

Lorentz Transformation The effects of special relativity on physics are
most visible in the so-called Lorentz transformations. These transformations
are used to transform coordinates and components of four vectors between
Minkowski coordinate systems (Cartesian Coordinates plus time coordinate)
of different inertial observers. A Lorentz transformation along the x-axis is
given by the matrix

Λ =


γ −γv 0 0

−γv γ 0 0
0 0 1 0
0 0 0 1

 . (1.1.2)

v is th relative velocity of the frames. γ is the Lorentz factor:

γ =
1√

1− v2
. (1.1.3)

1

1.2. EQUIVALENCE PRINCIPLE 2

Lorentz transformations in different directions are also possible. One just uses
the above matrix and combines it with rotations as required.

A detailed and illustrated introduction to special relativity is for instance
given in [TE91.1].

1.2 Equivalence Principle

Weak Equivalence Principle The weak equivalence principle has already
been known since Galileo Galilei. It states, that all bodies, regardless of their
mass, shape or structure, fall with the same downward acceleration. In the rest
frame of a falling body, other falling bodies will appear as moving inertially
in straight lines, even though they are moving on parabolas as seen from
an observer standing on the surface of earth. The principle is based on the
equivalence of gravitational mass and inertial mass. [MC73.1, P. 13-19].

Strong Equivalence Principle In physics, we can detect force fields exper-
imentally by observing the behaviour of test particles. Using this technique,
we can for instance deduce the electromagnetic field from the movements of a
charged particle. A freely falling observer however, cannot use test particles to
measure the gravitational field, since, as seen in the previous paragraph, all of
them will appear completely unaccelerated. For this reason, the gravitational
field cannot be measured locally 1.

The strong equivalence principle states, that a falling observer is equiv-
alent to an observer outside of all gravitational fields. He will not feel the
gravitational field, since it cannot be measured. The strong equivalence prin-
ciple is the basis of general relativity. [WR84.1, P. 66-67]. Figure 1.2.1 shows
a thought experiment concerning the equivalence of two observers B1 and B2.

Let us turn to the upper part of the figure first: B1 is freely falling in the
gravitational field of earth and B2 is located far away from any gravitational
field. Because of the strong equivalence principle, both are equivalent to each
other and they cannot measure a gravitational field. If B2 sends out a light
ray, it will propagate in a straight line, since nothing can deviate it. B1 must
observe the same effect. If B1 sends off a light ray, it must shoot off in a
straight line as well. This means, that the photons making up the ray have to
fall together with B1 at the same rate.

The lower part of the figure shows B1 standing on the surface of earth. B1

feels a normal force preventing them from falling towards earth’s centre. The
only change to the situation before is the normal force. If B2 is accelerated
by a rocket engine the two observers will again be equivalent, assuming the
force due to the engine has the same magnitude as the normal force. Let
us investigate the light ray sent off by B2 perpendicular to the acceleration:
since the photons are not accelerated by the engine, B2 will see the ray bend

1. Using the relative acceleration of separated test particles the tidal forces of the gravita-
tional field can be measured. However, this measurement is not local.

1.3. CURVED SPACETIME 3

Figure 1.2.1: The observers B1 and B2 are equivalent („B“ stands for „Beobachter“,
German for „observer“). Above, both observers are free of forces. Below, B1 is ac-
celerated by the normal force and B2 is accelerated by a rocket engine. The red line
represents a horizontally fired light ray as seen by the observers.

downwards. Because B1 is equivalent to B2, a similar light ray sent off by B1

will also curve down as seen by B1. The strong equivalence principle alone
already leads to the deflection of light rays by gravity.

1.3 Curved Spacetime 2

Spacetime In relativity, spacetime is the four-dimensional structure consist-
ing of all points in three-dimensional space at any point in time. Points in
spacetime are called events. In classical physics, spacetime is flat and world
lines of inertial particles are always straight lines.

2. This chapter is based on [MC73.1, chapter 1].

1.3. CURVED SPACETIME 4

Lorentz Frames The equivalence principle leads to an equivalence of falling
observers, similar to the equivalence of inertial observers in special relativity.
We call frames of reference of such observers Lorentz frames or inertial frames.

In contrast to the Lorentz frames of special relativity, the Lorentz frames
of general relativity are only locally inertial; this means, tidal forces can be
measured over finite distances. Local Lorentz frames have the property, that no
acceleration of the frame can be measured from within; this is equivalent to the
statement, that no gravitational field can be measured from within. Because of
this, gravity is not considered a force in general relativity. So that a stationary
observer relative to a gravitational field still perceives the trajectories of falling
bodies to be curved (after all that’s what we observe daily for objects being
thrown in the air), Einstein suggested, that spacetime itself has to be curved.
Such a curved spacetime would naturally lead to curved trajectories of falling
objects, without the need of an acting force.

Special relativity as well as the pre-relativistic formulation of physics (ex-
cluding Newtonian gravity) are still valid in all Lorentz frames and thus also
locally in curved spacetime, since a local Lorentz frame always exists.

Geodesics A falling observer is like an ant moving on a the curved surface of
an apple: even though it crawls only forward, it will follow a curved trajectory
due to the curvature of the apple’s surface 3. Analogous to this, a falling
observer moves in a straight line locally, since they themselves cannot measure
an acceleration. Globally, their path will be curved by spacetime.

The straightest possible world lines in curved spacetime are called geodesics.
All freely falling objects move about on geodesics.

Mass-Energy Spacetime curvature is created by mass-energy, in contrast
to the Newtonian gravitational field, which is generated only by mass. Figure
1.3.1 illustrates the curvature of spacetime due to a star and the resulting
curved trajectory of an orbiting planet.

The Einstein field equations (see Chapter 1.10) describe the relation be-
tween mass-energy density and spacetime curvature. They determine how mass
and energy curve spacetime, and how spacetime curvature influences the mo-
tion of mass and energy.

General relativity, the geometric interpretation of gravity, fulfils the equiv-
alence principle. The theory is incredibly successful: numerous measurements
and experiments confirm the theory today – not least the measurements of
gravitational waves in September 2015 by the LIGO-detector (see [AB16.1]),
a phenomenon predicted a century ago by Einstein 4.

Different approaches trying to describe gravity in the flat spacetime of
special relativity failed all or lead indirectly to general relativity (see [MC73.1,
Chapter 7] for an extensive overview over different failed approaches).

3. See [MC73.1, P. 3-5] for the short story „The Parable of the Apple“, which describes
this concept wonderfully.

4. Many other measurements, like the perihelion precession of Mercury (see [WR84.1, P.
143]) or the deflection of light by the sun (see [WR84.1, P. 146]), confirm the theory.

1.4. TENSORS 5

Figure 1.3.1: Spacetime, depicted as a two-dimensional surface, is being curved by the
mass of the big, orange star in the centre of the figure. Therefore, the trajectory of
the small, blue planet is curved. The curvature of spacetime due to the mass of the
planet is neglected.

1.4 Tensors
In general relativity we use Tensors to describe physical quantities. Tensors
are, for our purposes, generalizations of vectors and covectors. They were al-
ready proposed by Einstein in 1916 (see [EA16.1]).

Definition A rank (k, l) tensor is a multilinear function A, which maps k
covectors ω and l vectors v to a real scalar s:

s = A(ω1, . . . ,ωk,v
1, . . . ,vl). (1.4.1)

Tangent Space Tensors are bound to an event. All tensors except rank (0, 0)
tensors (scalars) operate on the elements of the tangent space and cotangent
space, which in curved spacetime are different at every event. Only tensors
operating on the vectors and covectors of the same (co-) tangent spaces can
be compared. It is thus generally not trivial, to move tensors from one event
in spacetime to another. See [WR84.1, P. 14-18].

Vectors are elements of the tangent space, covectors are elements of the
cotangent space. However, both tangent and cotangent space are deeply con-
nected by the metric (an isomorphism), see chapter 1.6.

The tangent space of an event can be visualised as a linear approximation
of the curved spacetime at that event: Displacements around the origin of the
tangent space correspond to displacements of first order in curved spacetime
around the event. This idea shows in the definition of the tangent space: Its
elements are tangent vectors to curves in curved spacetime. As seen before,

1.4. TENSORS 6

one then arrives at the cotangent space using the metric. See [WR84.1, P.
14-18].

Indices As soon as it is known how a rank (k, l) tensor affects all (k, l) tuples
of basis vectors and basis one-forms (basis covectors) of a coordinate system,
one can then calculate the components of the tensor relative to that coordinate
system (see [MC73.1, P. 53]):

Aα1···αk
β1···βl

= A(eβ1 , . . . , eβk , ϵ
α1 , . . . , ϵαl). (1.4.2)

Due to the linearity of tensors, equation (1.4.1) can be written as a product
of components:

s = Aα1···αk
β1···βl

ωα1
· · ·ωαk

vβ1 · · · vβl . (1.4.3)

Upper indices on tensors are called contravariant, lower indices covariant. See
[MC73.1, P. 75].

Tensor Product We can multiply two tensors together to form a new ten-
sor of higher rank, according to the following scheme that we call the tensor
product:

v ⊗ ω = vαωβ = Aα
β. (1.4.4)

Here, the tensor product of a vector v and a covector ω is shown.

Contraction A contraction is the vanishing of two indices of a tensor (or
tensor product) due to summation. For example:

Bβ = Aαβv
α. (1.4.5)

Gradient, Directional Derivative and Divergence These three oper-
ations (as well as other ones, not outlined here) are made possible by the
derivative operator ∇ (see chapter 1.7):

1. gradient:
∇T = ∇αA

β1...βk
γ1...γl

. (1.4.6)

2. directional derivative

∇kA = kα∇αA
β1...βk

γ1...γl
. (1.4.7)

3. divergence with respect to the index β1

∇ ·A = ∇β1
Aβ1...βk

γ1...γl
. (1.4.8)

Note, ∇ is not a covector; the attached index only shows, that the result of
the operation has one covariant index more than the operand.

1.5. COORDINATES 7

1.5 Coordinates

Events and Coordinate Systems We distinguish different events in space-
time by giving them unique names. If the names follow a systematic naming
convention, they form a coordinate system. We use tuples of numbers as coor-
dinates. A coordinate system is continuous, if two infinitesimally neighbouring
events differ only by an infinitesimal tuple of numbers. Sometimes, a coordi-
nate system is mostly continuous, with the exception of certain regions called
coordinate singularities. Continuous and mostly continuous coordinate sys-
tems are the coordinate systems we usually work with in physics. See [MC73.1,
P. 5-13]

Differences in coordinates do not necessarily reflect actual distances be-
tween events. In flat spacetime it is possible to choose such coordinates, but
in curved spacetime this is not generally true. It is even possible that not all
of spacetime can be covered by continuous coordinates and that coordinate
singularities, events with no or multiple coordinates, arise. In other words, in
curved spacetime we usually have no choice but to choose mostly continuous
systems. See [WR84.1, P. 11-14].
Local Coordinates We can always choose coordinates which are valid locally
and, in that local region, correspond to the familiar coordinates of special
relativity. This is true because local Lorentz frames always exist.
Special Covariance The laws of physics can be rewritten such that they
take on the same form in all coordinate systems and in every Lorentz frame.
This principle is known as the principle of special covariance. See [WR84.1, P.
58].
Coordinate Transformations Tensor components change in the following
way under a coordinate transformation x̃α(xβ):

Ãα
β =

∑
γ,δ

Aγ
δ

∂x̃α

∂xγ
∂xδ

∂x̃β
. (1.5.1)

For every additional covariant or contravariant index, we add a corresponding
term. Equation (1.5.1) ensures that scalars of the form

S = Aα1...αk
Bα1...αk (1.5.2)

remain unchanged by coordinate transformations. If the laws of physics are
written as equivalences of tensor products, special covariance is guaranteed.
See [EA16.1, P. 779-780] and [WR84.1, P. 56-59].

1.6 Metric Tensor

The Geometry of Spacetime If the infinitesimal distances between a cen-
tral event and all its neighbours are known, the local shape of spacetime is

1.6. METRIC TENSOR 8

also known. Likewise, the shape of the entire spacetime can be known if all
distances between mutually neighbouring events are known. The geometry
of spacetime (the way it curves) is fully described by the distances between
events. See [MC73.1, P. 309].
Metric Tensor The metric tensor g is a rank (0, 2) tensor defined at every
event in spacetime. It defines the scalar product of two vectors v and w in the
tangent space (see [MC73.1, P. 305]). It is a measure for length and angles;
this is especially visible in Euclidean geometry:

v · v = |v|2 (measure of length),
v ·w = |v||w| · cos∠(v,w) (measure of angles). (1.6.1)

The metric tensors of every event contain all the information about spacetime
curvature.
Metric The rule telling us how to compute the scalar product is called the
metric. It is often denoted as the squared length of an infinitesimal vector dx:

ds2 = gαβdx
αdxβ, (1.6.2)

here, gαβ are the components of the metric tensor. g is symmetric, that is, the
indices α and β can be swapped without changing the value of the component:
gαβ = gβα. The metric tensor has 16 components, symmetry however only
allows up to 10 different components. See [MC73.1, P. 310].
Metric in flat Spacetime In flat spacetime, the components of g relative
to a Minkowski coordinate system are gαβ = diag(−1, 1, 1, 1) everywhere. The
metric possesses a Lorentz signature; which means, that the sign of the time
component is different from that of the space component. ds2 then becomes
the familiar infinitesimal spacetime interval dI2 of special relativity.
Gravitational Potential In general relativity, the metric tensor is gener-
ally different at every event. The flat spacetime of special relativity is only an
exception. The components gαβ of the tensor field g can be seen as the poten-
tials creating the effects of gravity (see [MC73.1, P. 436]). When we speak of
a gravitational field in general relativity we mean the tensor field g.
Raising and lowering Indices Indices of vectors, covectors and tensors in
general can be raised and lowered by multiplication with the metric tensor:

ωα = gαβv
β, (1.6.3)

vα = gαβωβ . (1.6.4)

gαβ is the inverse metric tensor which is defined using the Kronecker delta
function δαγ :

gαβgβγ = δαγ . (1.6.5)
For every vector, there is a corresponding covector and vice versa. This is the
previously mentioned connection between tangent space and cotangent space.
See [WR84.1, P. 25].

1.7. GEODESICS 9

1.7 Geodesics

Definition An observer moves along a geodesic if they move locally inertially
on a straight line. Their velocity vector does not change locally. Along the
geodesic, that is at every event laying on the geodesic, the following applies
for the tangent vector u = dx/dλ of the geodesic:

∇uu = ∇λu = 0. (1.7.1)

The parametrization λ of the geodesic is arbitrary. See [MC73.1, P. 262-263].
Equation (1.7.1) is the abstract form of the geodesic equation.

Derivative and parallel Transport The geodesic equation (1.7.1) is defined
via the derivative operator ∇. The directional derivative ∇u calculates the rate
of change of an arbitrary tensor field A along u at the event x0. To do so, A
has to be evaluated at the events x = x0 and x = x0 + dx:

∇uA(x0) = lim
k→0

A(x = x0 + uk)−A(x = x0)

k
, (1.7.2)

where limk→0 uk = dx. Because A(x = x0) and A(x = x0 + dx) do not op-
erate on the same (co-) tangent spaces, one of the tensors has to be parallelly
displaced following the curvature of spacetime, that is along a geodesic. This
procedure is called parallel transport. Generally, multiple geodesics exist be-
tween two events. In the limit where the events become neighbouring however,
only one possible geodesic exists. This means that parallel transport along an
infinitesimal distance is uniquely defined. See [MC73.1, P. 249].

Figure 1.7.1 shows the parallel transport of a vector v. Before the vectors
at x and x + dx can be compared, v(x) has to be parallelly transported to
x+ dx, it then becomes v(x)||.

C

v(x)

v(x+ dx)

v||(x)

dvC

v(x)

v||(x)

v(x+ dx)

dv

Figure 1.7.1: Geometric representation of parallel transport of a vector v along a
geodesic C in flat and curved spacetime.

1.7. GEODESICS 10

Properties of the Derivative Operator Certain rules hold for the deriva-
tive operator. Especially the sum rule

∇(A+B) = ∇A+∇B, (1.7.3)

the product rule

∇(A⊗B) = (∇A)⊗B +A⊗ (∇B) (1.7.4)

and the chain rule (not shown) for all tensors A and B. The sum rule only
holds, if both tensors are of the same rank. See [MC73.1, P. 257-258].
Equivalence Principle From the equivalence principle we have

∇g = 0, (1.7.5)

this is the mathematical formulation of the statement, that no gravitational
field can be measured locally. See [WR84.1, P. 35].
Parallel Transport of Vectors The scalar product of two parallelly trans-
ported vectors v and w remains unchanged by the transport:

∇u(v · w) = [∇γ(gαβv
αwβ)]uγ

= [(∇γgαβ)v
αwβ + (∇γv

α)gαβw
β + (∇γw

β)gαβv
α]uγ

= 0. (1.7.6)

The first term vanishes due to the equivalence principle, equation (1.7.5). The
other terms vanish because both vectors are parallelly transported.

Especially the magnitude of a parallelly transported vector v remains un-
changed:

∇γ(v · v) = 0. (1.7.7)

Christoffel Symbols In index notation, the derivative operator is defined
using the Christoffel symbols (also: connection coefficients) and the ordinary
derivative operator ∂:

∇γA
α
β = ∂γA

α
β + Γα

µγA
µ
β − Γµ

βγA
α
µ. (1.7.8)

For every covariant or contravariant index, a corresponding term is added.
Γα

βγ are Christoffelsymbols of second kind. They show how basis vectors of a
coordinate system change, when they are parallelly displaced along themselves.
Since the Christoffel symbols depend on the choice of coordinates, they are not
components of a tensor and do not fulfil equation (1.5.1). Christoffel symbols
can be calculated from derivatives of the metric tensor:

Γα
βγ = gαδ

1

2
(∂γ gδβ + ∂βgδγ − ∂δgβγ). (1.7.9)

The Christoffel symbols are analogous to the force field of gravity in the clas-
sical theory. See [WR84.1, P. 35-36].

1.8. RIEMANN TENSOR 11

Geodesic Equations The geodesic equations for individual velocity compo-
nents in index notation are:

d2xα

dλ2
+
∑
β,γ

Γα
βγ

dxβ

dλ

dxγ

dλ
= 0. (1.7.10)

See [MC73.1, P. 263]. The equations (1.7.10) are solved by cuRRay for photons
in Kerr-Newman spacetime. The needed Christoffel symbols will be derived in
appendix B.
Types Given the tangent vector uα we distinguish types of geodesics de-
pending on the sign of gαβu

αuβ. A geodesic can never change its type. The
product is negative for timelike geodesics, positive for spacelike geodesics and
zero for lightlike (null) geodesics. Massive particles move on timelike geodesics
and massless particles (for instance photons) on lightlike geodesics; no known
particles move on spacelike geodesics. See [WR84.1, P. 44].

1.8 Riemann Tensor

Relative Acceleration of Geodesics The Riemann curvature tensor R
is a measure for the relative acceleration of neighbouring, initially parallel
geodesics. It thus measures the tidal gravitational field: since tidal fields are
the only effects of gravity, one can measure in a freely falling frame according
to the principle of relativity, the Riemann tensor is usually what is measured
in such situations. Lets take a look at figure 1.8.1: a family γn(λ) of geodesics
pervade spacetime. Individual geodesics differ by a selection parameter n. For
every geodesic t = ∂/∂λ is the tangent vector and ξ = ∂/∂n the deflection
vector.

The second order change of ξ is the wanted relative acceleration of neigh-
bouring geodesics. The acceleration can be expressed by the rank (1, 3) Rie-
mann curvature tensor R:

∇t∇tξ +R(t, ξ, t, ·) = 0. (1.8.1)
See [MC73.1, P. 265-270].
Path Dependency of parallel Transport Besides relative acceleration of
geodesics, the Riemann curvature tensor also quantifies the path dependency of
parallel transport. The commutator of derivatives along two coordinate vector
fields A and B is give by:

R(C,A,B, ·) = [∇A,∇B]C. (1.8.2)
Equation (1.8.2) produces a vector which shows how strongly ∇A∇BC and
∇B∇AC differ. Parallel transport along non-infinitesimal distances is there-
fore path dependant. See [MC73.1, P. 277-281].
Components The components of the Riemann curvature tensors are

R δ
αβγ = ∂βΓ

δ
αγ − ∂αΓ

δ
βγ + Γϵ

αγΓ
δ
ϵβ − Γϵ

βγΓ
δ
ϵα. (1.8.3)

See [WR84.1, P. 47-48].

1.9. STRESS-ENERGY-MOMENTUM TENSOR 12

γn(λ)

t

ξ

Figure 1.8.1: A family γn(λ) of geodesics: the tangent vector t = ∂/∂λ and the
deflection vector ξ = ∂/∂n are defined at every point on every geodesic. The second
order change of ξ is the relative acceleration of neighbouring geodesics.

1.9 Stress-Energy-Momentum Tensor

Structure of the Stress-Energy-Momentum Tensor The symmetric
rank (0, 2) stress-energy-momentum tensor T describes mass and energy at
an event in spacetime. The energy of the gravitational field is not contained
in T .

T (v,w) = Tαβ v
αwβ (1.9.1)

describes different aspects of mass, energy, momentum, pressure and mechan-
ical stress depending on the choice of the vectors v and w. In a local Lorentz
frame the components of T are:

T00 ≡ mass-energy density
T0a = Ta0 ≡ a component of momentum density
Tab = Tba ≡ ab component of the Maxwell stress tensor. (1.9.2)

See [MC73.1, P. 131].

Conservation of Energy and Momentum For energy and momentum to
be conserved, the divergence of T has to vanish:

∇ · T = ∇αTαβ = 0. (1.9.3)

This guarantees that no sources or sinks of mass-energy can exist. See [MC73.1,
P. 146].

1.10. EINSTEIN FIELD EQUATIONS 13

1.10 Einstein Field Equations
The Einstein Field Equations describe the interaction between spacetime cur-
vature on one hand and mass-energy on the other. By solving the equations
the indices gαβ of the metric tensor and thus the shape of spacetime can be
calculated.

Ricci Curvature Tensor und Ricci Scalar By contracting the Riemann
curvature tensor over the second and third index we arrive at the Ricci cur-
vature tensor:

Rαγ = R β
αβγ . (1.10.1)

By repeated contraction we arrive at the Ricci scalar:

R = gαβRαβ = R α
α . (1.10.2)

See [WR84.1, P. 40].

Einstein Tensor The Einstein tensor G can be obtained from the Ricci
curvature tensor and the Ricci scalar:

Gαβ = Rαβ − 1

2
Rgαβ . (1.10.3)

G is symmetric and fulfils the Bianchi identity:

∇ ·G = ∇αGαβ = 0. (1.10.4)

Field Equations The Einstein field equations are

G =
8πG

c4
T (1.10.5)

or
Rαβ − 1

2
Rgαβ =

8πG

c4
Tαβ (1.10.6)

respectively. See [WR84.1, P. 72].

Conservation of Energy and Momentum From the Bianchi identity
∇ ·G = 0 follows that ∇ · T = 0. This leads to the desired finding, that
energy and momentum are conserved. General relativity thus predicts the
conservation of energy and momentum from geometric principles (under the
assumption that the principle of relativity holds). See [MC73.1, P. 475].

Solving the Field Equations The Einstein field equations are second order
differential equations. They must be solved simultaneously for the metric ten-
sor and the stress-energy-momentum tensor, since both quantities are strongly
linked. Because of their complexity, the field equations are only algebraically
solvable in rare cases with high symmetry (see [WR84.1, P. 73]).

Chapter 2

Black Holes

In this chapter we will discuss two solutions to the Einstein field equations:
the Schwarzschild metric and the Kerr-Newman metric. We will use both to
describe black holes.

2.1 Schwarzschild Metric
The Schwarzschild metric is one of the few algebraic solutions to the field
equations. Because of its high degree of symmetry, it is relatively easy to derive.
The Schwarzschild metric describes spacetime around a spherically symmetric
and static body. It can be applied to planets and stars, since those are usually
sufficiently symmetric and static.

Vacuum and internal Metric The Schwarzschild metric was derived for
both the vacuum outside the body [SK16.1] and the internals of the body
[SK16.2] in 1916 by Karl Schwarzschild. We will only make use of the vac-
uum metric. From now on, we simply speak of the vacuum metric as the
Schwarzschild metric.

Coordinates The Schwarzschild metric is defined in so-called Schwarzschild
coordinates. The coordinates of an event P are

xα(P) = (t, r, θ, ϕ). (2.1.1)

θ and ϕ are angular coordinates: θ is the zenith angle and ϕ the azimuth angle.
The polar axis of the coordinate system is freely choosable. t is the proper time
of an observer resting at infinity. r is the radial Schwarzschild coordinate. r
does not measure the distance from the centre of the body, but is defined in
the following way:

r = ([Area of the sphere around r = 0 passing through P]/4π)1/2. (2.1.2)

See [MC73.1, P. 596].

Metric The Schwarzschild metric depends on the mass M of the central body

14

2.2. KERR-NEWMAN METRIC 15

and the radial coordinate r. It is given by

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θ dϕ2

)
. (2.1.3)

See [MC73.1, P. 820].
Event Horizon Provided the surface of the central mass lies below r = 2M ,
at r = 2M , gtt becomes zero and grr becomes infinite. It can be shown that
this is not a physical singularity since none of the components of the Riemann
tensor become infinite at r = 2M . r = 2M is a mere coordinate singularity.
See [WR84.1, P. 124].

r = 2M is called the Schwarzschild radius. Earth for instance, has a
Schwarzschild radius of (2G·5.97·1024 kg)/c2 ≈ 9mm. A falling object requires
an infinite coordinate time t to arrive at the Schwarzschild radius, but only a
finite proper time.

The region inside the Schwarzschild radius is called a black hole. This re-
gion of spacetime is cut off from the rest of the universe at r = 2M by the event
horizon. All timelike and lightlike geodesics falling below the event horizon will
never escape to r > 2M . They will all end at r = 0. This means that objects
with a smaller radius than their own Schwarzschild radius will inevitably col-
lapse to an infinitely dense point at r = 0. This collapse is called gravitational
collapse. Because no light can escape from black holes, they appear completely
black. See [WR84.1, P. 154-155].
Photon Sphere At r = 3M , unstable orbits of photons exist. The sphere
r = 3M is called photon sphere because of this. Photons in orbit either escape
to infinity when nudged outwards or fall into the black hole when nudged
inwards. See [WR84.1, P. 143].
Singularity After a gravitational collapse, the entire mass of the body is
concentrated at r = 0 in an infinitely dense point 1. r = 0 is at the same time
a coordinate singularity and a physical singularity, since the components of
the Riemann tensor blow up. See [WR84.1, P. 124].
Schwarzschild Black Holes The Schwarzschild metric describes the space-
time r > 2M around a black hole with mass M . Such black holes are called
Schwarzschild black holes. The software can create images of Schwarzschild
black holes if the angular momentum and the electric charge are both set to
zero. Schwarzschild black holes are useful for the visualization of many light
deflection phenomena.

2.2 Kerr-Newman Metric
The Kerr-Newman Metric describes the spacetime of an axially symmetric
mass M with angular momentum L and electric charge Q. The metric was

1. It is assumed that quantum-gravitational effects will play important roles at high den-
sities. These however, are yet unknown.

2.2. KERR-NEWMAN METRIC 16

found in 1965 by Ezra T. Newman [NE65.1]. It is a generalization of the
Reissner-Nordström metric [RH16.1] (1916), [NG18.1] (1918) and the Kerr
metric [KR63.1] (1963), which in turn are generalizations of the Schwarzschild
metric.

No-hair Theorem Similar to the Schwarzschild metric, the Kerr Newman
metric allows black holes. Those are called Kerr-Newman black holes. The No-
hair theorem „Black holes have no hair“ 2 is metaphor stating that black holes
have only three properties: the mass M , the angular momentum L and the
electric charge Q. If the theorem is true, all types of stationary black holes can
be described by the Kerr-Newman metric. For that reason, the Kerr-Newman
metric was chosen for the application in cuRRay.

Coordinates We use the Kerr-Newman metric in so-called Boyer-Lindquist
coordinates (BL coordinates for short). BL coordinates have the advantage of
possessing Killing vector fields identical to the coordinate vector fields (See
chapter 2.3). t and ϕ have the same meaning as in Schwarzschild coordinates.
However, the polar axis is now the axis of rotation. The Kerr-Newman metric
is not static because the central mass rotates, but it is stationary. This means
that the components of the metric tensor are invariant with the coordinate
time t (see [WR84.1, P. 119]).

The symmetry allows an arbitrary scaling of the geodesic parameter λ.
During ray tracing, cuRRay flips time (scaling by -1) to calculate geodesics of
photons backwards. The black hole now rotates in the opposite direction (see
[HS73.1, P. 161]). Because of this, we have to be careful with the interpretation
of images where a ̸= 0. We will further investigate this difficulty in chapter
7.2.

r and θ are some sort of elliptic coordinates. We will discuss them later in
more detail.

Metric The Kerr-Newman metric is given by

ds2 = −
(
∆− a2 sin2 θ

Σ

)
dt2 − 2a sin2 θ(r2 + a2 −∆)

Σ
dtdϕ

+

(
(r2 + a2)2 −∆a2 sin2 θ

Σ

)
sin2 θ dϕ2 +

Σ

∆
dr2 +Σdθ2, (2.2.1)

Σ = r2 + a2 cos2 θ, (2.2.2)

∆ = r2 + a2 +Q2 − 2Mr, (2.2.3)

a = L/M. (2.2.4)

The metric reduces to the Schwarzschild metric if a = Q = 0, to the Kerr
metric if Q = 0, a ̸= 0 and to the Reissner-Nordström metric if a = 0, Q ̸= 0.
See [WR84.1, P. 313-314].

2. John A. Wheeler in [MC73.1, P. 876]

2.2. KERR-NEWMAN METRIC 17

Frame-dragging Effect In the vicinity of a rotating black hole, the space-
time is dragged in the direction of rotation because of the cross term dtdϕ
(see [MC73.1, P. 879]). This phenomenon is called frame-dragging effect or
Lense-Thirring effect. Geodesics of particles are affected by this.
Event Horizons The Kerr-Newman metric possesses two event horizons (or
one in the limiting case) at the positions r±. They result from the equation
∆ = 0:

r± = M ±
√
M2 − a2 −Q2. (2.2.5)

They are called outer horizon (r+) and inner horizon (r−) (see [WR84.1, P.
315]). If the square root in (2.2.5) becomes zero, then only one event horizon
exists. Such a metric is called extreme. If equation (2.2.5) has no real solution,
because M2 ≤ a2 + Q2, no event horizon exists. The singularity is naked.
Because of the assumption of cosmic censorship, it is believed that no naked
singularity can exist (see [WR84.1, P. 299-308]).
Ergospheres Another interesting property is the change of sign of g00, that
is (a2 sin2 θ −∆)/Σ = 0 at rE±:

rE± = M ±
√
M2 −Q2 − a2 cos2 θ. (2.2.6)

rE+ is called the outer static limit, because no static observers can exist in the
range rE+ > r > r+. All observers are dragged in the direction of rotation.
The spacetime between r+ and rE+ is called the outer ergosphere. The nearer
an observer gets to r+, the quicker their orbit must be in order to stay at
r = const. Similarly, rE− is called the inner static limit and the spacetime
between r− and rE− is called the inner ergosphere. See [MC73.1, P. 894].
Photon Orbits Photon orbits also exist in Kerr-Newman spacetime (see
[CC13.1]). We are however not going to study them in detail.
Singularity At

r2 + a2 cos2 θ = 0 (2.2.7)
we have a singularity (see [WR84.1, P. 314]). If we interpret r and θ as spherical
coordinates, the singularity would only appear for r = 0 and θ = π/2 but not
for other values of θ. This is a contradiction, since an event requires the same
metric tensor, no matter which direction we are looking from. If we interpret r
and θ as Boyer-Lindquist coordinates, it becomes apparent that the singularity
is actually a ring around the axis of rotation. See [WR84.1, P. 314-315].
Cartesian Coordinates The Kerr-Newman metric is asymptotically flat (see
[HS73.1, P. 161]), which means that spacetime becomes more and more flat,
the further away from the black hole an observer is. Due to this property, we
can cover the spacetime with a Cartesian coordinate system, which becomes
inaccurate in the vicinity of the event horizon, but further out reflects actual
distances and angles. We use Cartesian coordinates for geometrical vector
calculations in cuRRay:

x =
√
r2 + a2 sin θ cosϕ,

2.2. KERR-NEWMAN METRIC 18

y =
√
r2 + a2 sin θ sinϕ,

z = r cos θ (2.2.8)

(see [VM08.1, P. 15]). In these coordinates, the ring singularity is centred
around the origin and has the radius a (see [HS73.1, P. 162-163] and [WR84.1,
P. 314-315]).

Calculations in Cartesian Coordinates We will use Cartesian coordinates
in cuRRay to compute intersections of light rays with spheres. On one hand,
this simplifies computation, as we can use ordinary vector geometry. On the
other hand, it introduces errors, as these coordinates reflect true spacetime
structure only far away from the black hole.

We accept this inaccuracy, as construction of spheres in curved spacetime
would certainly exceed the scope of this project. Even tough the deviations
should remain small in most cases, images including spheres have to be inter-
preted carefully.

Only the collision detection between spheres and rays is concerned by this
inaccuracy. The rays themselves as well as their intersection with accretion
discs are computed in BL coordinates.

Visualization We can visualize the Kerr-Newman metric with Cartesian
coordinates. Figure 2.2.1 shows a cut (t = ϕ = const) through the metric
M = 0.9, Q = 0 and a = 0.85 of a black hole rotating around the z-axis.
Figure 2.2.2 shows a similar cut for the extreme case M = a = 0.9 and Q = 0.
In both figures, the faint lines represent the curves r = const and θ = const.
The Cartesian coordinates are labelled along the borders. The two black dots
represent the cut through the infinitely thin ring singularity. The red curves
represent the event horizons and the black ones the static limits.

2.2. KERR-NEWMAN METRIC 19

r = 0

r = 0.5

r = 1

r = 1.5

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5
θ = 0 θ =

π

6
θ =

π

6

θ =
π

3
θ =

π

3

θ =
π

2
θ =

π

2

θ = 2π θ =
5π

6
θ =

5π

6

θ =
2π

3
θ =

2π

3

r+r
−

rE+rE−

Figure 2.2.1: Kerr-Newman metric for M = 0.9, Q = 0 and a = 0.85. The ellipse
r = 0 collapses to a line between two points on the ring singularity.

2.2. KERR-NEWMAN METRIC 20

r = 0

r = 0.5

r = 1

r = 1.5

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5
θ = 0 θ =

π

6
θ =

π

6

θ =
π

3
θ =

π

3

θ =
π

2
θ =

π

2

θ = 2π θ =
5π

6
θ =

5π

6

θ =
2π

3
θ =

2π

3

r rE+rE−

Figure 2.2.2: Extreme Kerr-Metric in Cartesian coordinates for M = 0.9, Q = 0 and
a = 0.9. The coordinate singularities are the same as in figure 2.2.1. Only one event
horizon exists.

2.3. KILLING VECTOR FIELDS AND CONSTANTS OF MOTION 21

2.3 Killing Vector Fields and Constants of Motion

Killing Vector Fields If every event P in the spacetime is infinitesimally
displaced by dx(P) without changing the metric, then a Killing vector field
exists which is the generator of the infinitesimal displacement. We have:

ξ =
∂

∂x
. (2.3.1)

Every vector field fulfilling the Killing equation

ξα;β + ξβ;α = 0 (2.3.2)

is a Killing vector field. Killing vector fields embody the symmetries of space-
time. See [MC73.1, P. 652].
Constants of Motion The scalar product between the tangent vector u
and the Killing vector along a geodesic remains constant. This product is
called the constant of motion. Since the geodesic can be chosen freely, we have
everywhere

u · ξ = konst. (2.3.3)

If the Killing vector field corresponds to coordinate vector field ∂K , we have
in addition

ξα = δαK . (2.3.4)

See [MC73.1, P. 651].
In a suitable coordinate system, we can thus simplify the geodesic equation

using constants of motion. We will use this simplification in cuRRay.

2.3.1 Killing Vector Fields in Kerr-Newman Spacetime 3

The Kerr-Newman metric possesses two Killing vector fields. They correspond
to the time-translational symmetry and the rotational symmetry.
Energy The Killing vector field ξα = (1, 0, 0, 0) gives in BL coordinates the
following constant of motion:

E = gttu
t + gtϕu

ϕ. (2.3.5)

E is proportional to the energy of a particle on the geodesic, as seen by an
observer at infinity.
Angular Momentum The Killing vector field ηα = (0, 0, 0, 1) gives in BL
coordinates the following constant of motion:

L = gϕϕu
ϕ + gtϕu

t. (2.3.6)

L is proportional to the angular momentum of a particle on the geodesic, as
seen by an observer at infinity.

3. This chapter is based on [WR84.1, P. 313, 320]

2.3. KILLING VECTOR FIELDS AND CONSTANTS OF MOTION 22

2.3.2 Geodesic Equations of Kerr-Newman Spacetime
In this chapter, we show the geodesic equations of Kerr-Newman spacetime,
which will be integrated by cuRRay. We will begin with the geodesic equations
of the form (1.7.10):

d2xα

dλ2
+ Γα

βγ

dxβ

dλ

dxγ

dλ
= 0. (2.3.7)

The geodesic equations form a coupled system of ordinary, second order, partial
differential equations.

First Order Equations The Killing vector fields ξα and ηα allow us to
simplify the equations of motion for the t and ϕ components of the position.
The equation for the t component becomes

dt

dλ
=

E · gϕϕ − L · gtϕ
gttgϕϕ − g 2

tϕ

(2.3.8)

and the one for the ϕ component

dϕ

dλ
=

L · gtt − E · gtϕ
gttgϕϕ − g 2

tϕ

. (2.3.9)

The initial position xα0 , E and L alone determine the equations of motion
(2.3.8) and (2.3.9). We derive these equations in appendix A.

Second Order Equations The equations for the t and θ components of
position remain second order equations. However, we can remove all Γ terms
which become zero. The equation for the r component becomes

d2r

dλ2
=− Γr

tt · (ut)2 − Γr
rr · (ur)2 − Γr

θθ · (uθ)2 − Γr
ϕϕ · (uϕ)2

− 2Γr
tϕu

tuϕ − 2Γr
rθu

ruθ, (2.3.10)

and the one for the θ component

d2θ

dλ2
=− Γθ

tt · (ut)2 − Γθ
rr · (ur)2 − Γθ

θθ · (uθ)2 − Γθ
ϕϕ · (uϕ)2

− 2Γθ
tϕu

tuϕ − 2Γθ
rθu

ruθ. (2.3.11)

Where uα = dxα/dλ. A list of expressions for the Christoffel symbols used in
(2.3.10) and (2.3.11) are also given in appendix B.

Chapter 3

Light

In this chapter, we take a look at light propagation in curved spacetime.

3.1 The Electromagnetic Field
The electromagnetic field affects and is generated by electrically charged parti-
cles. It is responsible for the electromagnetic force, one of the four fundamental
forces of nature. The electromagnetic field allows the existence of waves that
propagate at the speed of light: electromagnetic radiation.
Faraday Tensor The rank-(1,1) Faraday Tensor F describes the electromag-
netic field. In a local Lorentz frame, it can be constructed from the components
of the electric vector field E and the magnetic vector field B:

Fα
β =

β →

α
↓


0 Ex Ey Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0

. (3.1.1)

See [MC73.1, P. 71-73].
Lorentz Force The force, which the electromagnetic field exerts on a charged
particle of charge q, is the called the Lorentz force:

dp

dτ
= qF (u) = qFα

β u
β, (3.1.2)

where u is the velocity of the particle and τ is its proper time. See [MC73.1,
P. 73].
Maxwell Equations The Maxwell equations describe the dynamics of the
electromagnetic field. They take on a simple form, when written in terms of
the Faraday tensor:

Fαβ;γ + Fβγ;α + Fγα;β = 0, (3.1.3)

Fαβ
;β = 4πjα. (3.1.4)

23

3.2. ELECTROMAGNETIC WAVES 24

See [MC73.1, P. 568].
Wave Equation The electromagnetic field is created by a vector potential
A:

Fαβ = Aβ;α −Aα;β. (3.1.5)

Equation (3.1.4) can be rewritten using A. This is how we get the wave equa-
tion 1:

−Aα;β
β +Rα

βA
β = 4πjα. (3.1.6)

The wave equation (3.1.6) allows the existence of periodically changing poten-
tials. Such potentials form a wave. The term Rα

βA
β incorporates spacetime

curvature into the wave equation. This term makes the search for solutions of
the wave equation more difficult. See [MC73.1, P. 569].

3.2 Electromagnetic Waves
Possible solutions of the wave equation (3.1.6) are electromagnetic waves trav-
elling at the speed of light: light. Waves in curved spacetime are very similar
to the electromagnetic waves observed in flat spacetime, with the only differ-
ence being the Ricci-term leading to discrepancies. If we however choose the
wavelength short enough, this discrepancy becomes negligible. See [MC73.1,
P. 571].

Under the assumption of a short enough wavelength, we arrive at the fol-
lowing conclusions 2:
Wave Vector An observer with velocity u measures the angular frequency
ω of an electromagnetic wave to be

ω = −φ;αu
α = −kαu

α. (3.2.1)

k is called the wave vector. It points in the direction of the spread of the wave.
Null Geodesics For the wave vector we have in particular:

k · k = 0, (3.2.2)

∇kk = 0. (3.2.3)

k is a null vector and is being transported parallelly along itself. k is also
proportional to the velocity u of the wave, therefore:

u · u = 0, (3.2.4)

∇uu = 0. (3.2.5)

Electromagnetic radiation moves along null geodesics. These geodesics are
commonly called light rays.

1. At the same time the Lorenz gauge condition Aα
;α = 0 is applied.

2. For a rigorous derivation, see [MC73.1, chapter 22.5]

3.3. PHOTONS 25

3.3 Photons 3

Since light rays propagate along geodesics, it is possible to describe light using
particles moving on these geodesics. Such particles are called photons. cuRRay
solves the geodesic equations of photons.
Rest Mass Photons have no rest mass because they move on null geodesics.
Momentum The momentum p of a photon is given by

p = ~k. (3.3.1)

p points in the same direction as the velocity u.
Energy The energy of a photon is

E = ~ω. (3.3.2)

3.4 Deflection of Light Rays
Figure 3.4.1 shows schematically how the light rays γ1 and γ2 coming from
a source S are deflected by a Schwarzschild black hole H by the angles α1

and α2. In this two-dimensional diagram, the observer O sees two images (I1
and I2) of the source. In three dimensions a ring appears, when the source is
exactly behind the black hole.

L QB

γ1

γ2

I1

I2

α1

α2

Figure 3.4.1: The Schwarzschild black hole H deflects the light rays γ1 and γ2 coming
from the source S, such that the observer O sees the images I1 and I2.

Light rays from different parts of an extended source are deflected differ-
ently in general. This leads to a distortion of the source’s image.

The phenomena described in this chapter are those we will see in the
pictures generated by cuRRay.

3.5 Gravitational Redshift
Light signals sent by an observer Bs (sender) and received by an observer Br

(receiver) are subject to gravitational redshift. Differences in the metric at the
3. This chapter is based on [SP99.1, P. 98-100].

3.5. GRAVITATIONAL REDSHIFT 26

positions of Bs and Br lead to changes in the period T of the electromagnetic
waves and thus to a shift in angular frequency ω. If the wavelength increases,
the phenomenon is called redshift, if the wavelength decreases, it is called
blueshift.

Ratio of Frequencies In cuRRay we are interested in the ration of angular
frequencies ωr/ωs. From the equations (2.2.1) and (3.2.1) we arrive at the
expression of this ratio in Kerr-Newman spacetime:

ωr

ωs
=

ut
√−gtt − uϕ

gtϕ√
−gtt

∣∣∣∣
r

ut
√−gtt − uϕ

gtϕ√
−gtt

∣∣∣∣
s

. (3.5.1)

See appendix C for a derivation of this equation
As described more fully in chapter 6, cuRRay calculates u backwards along

the geodesic and utilises the starting value ur in a process called raytracing.
us is known after raytracing. The software then employs equation (3.5.1) to
calculate the gravitational redshift.

Here it should be noted, that equation (3.5.1) only works for stationary
observers. For rotating black holes, the equation becomes unphysical if the
sender is within the ergosphere, since no stationary observers can exist there.
Furthermore the equation also cannot deal with sources inside the ergosphere.
cuRRay thus only computes redshift for sources outside the ergosphere.

Chapter 4

Overview of cuRRay

In this chapter, we give an overview over the software cuRRay (CUDA
relativistic Raytracer). cuRRay is the main object of this work and was pro-
grammed from scratch.

4.1 Functionality
cuRRay can create images, so-called frames, of black holes and objects in Kerr-
Newman spacetime, like the image of an accretion disc around the black hole
(see further down).

Two version of cuRRay were programmed: The CUDA version and the
CPU (central processing unit) version. The CUDA version requires a sup-
ported NIVIDIA graphics card and uses CUDA to accelerate computation. It
is generally faster than the CPU version. The CPU version does not require a
graphics card and uses the CPU for computations.

Raytracing Raytracing is the drawing of an image by simulation of single
light rays. For each pixel of the frame to create, cuRRay traces the correspond-
ing light ray backwards through Kerr-Newman spacetime until an object is
hit, the ray escapes to infinity or the ray crosses the event horizon. This way,
both the colours and redshifts of pixels can be calculated.

Scene The software reads information about the scene from a YAML file 1, the
scene file. This information contains the parameters of the metric, the position,
orientation and field of view of the observer. In addition, an accretion disc can
be configured, spheres can be placed and a sky can be chosen. Finally, the
scene file allows certain special pixels to be coloured differently: The colours
of the event horizon, the sky (when no sky image is chosen) and erroneous
pixels can be configured. Certain parameters in the scene file can be linearly
animated over multiple frames by specifying a start and an end value.

Spheres cuRRay allows spheres to be placed in the scene. Spheres receive

1. YAML is an easily readable markup language which can also be easily read by computers.
See http://yaml.org/.

27

4.2. SYSTEM REQUIREMENTS 28

a chessboard pattern coloured in grey and a configurable accent colour. The
radius of each sphere is also configurable. Eight sphere can be placed at most.

Accretion Disc Infalling gas often accumulates in a disc around the equator
of the black hole, the so-called accretion disc. An accretion disc can be placed
in the scene in the plane θ = π/2. To model the disc, the inner and outer radii
as well as two accent colours (one for each side) can be chosen. If only one
colour is selected, the lower side receives the complimentary colour of the top.
Like spheres, the disc is also covered by a chessboard pattern.

Starry Sky One can choose an image file to be projected onto the sky. It is
thus possible to draw a starry sky behind the black hole.

Frame Information Frame information is sent to cuRRay via the command
line. It contains the dimensions in pixels of the frames to be produced, the
amount of frames to create, the path to the scene file, the output directory
and the type of the output.

System Configuration It is possible to specify a system configuration file
in the command line. This file is also a YAML-file. It defines which GPUs
(CUDA version) or how many CPU cores (CPU version) should be used. Also
it provides useful options for console and log output as well as for the ray-
tracer. Some options can be overwritten in the command line. A default system
configuration is chosen when none is specified.

Output cuRRay produces different types of output depending on the config-
uration. Firstly, it can produce a text file containing all information about the
scene and the frames it just calculated. Secondly, pixel colours can be saved in
a PNG image file for every calculated frame (this is the type of output we are
most interested in). Thirdly, the redshift data for every pixel can be stored in
addition PNG files, again one per frame. Lastly, cuRRay can create a CSV file
with detailed pixel data, one per frame. All files are numbered with the frame
they belong to.

4.2 System Requirements

Platform cuRRay was written in C++ 2 and uses only platform-independent
code libraries. Because of this, cuRRay can be compiled on most 64-bit oper-
ating systems. See appendix G for more information about building cuRRay.
The Git repository (see appendix F) contains the source code and binaries for
Windows 10 and Linux Debian 8.

Processor and OS Architecture A 64-bit processor as well as a 64-bit
operating system are required.

Memory cuRRay requires a minimum of 1 GB of memory. However, drawing
large frames on the CPU might require more.

2. isocpp.org/

4.3. USED CODE LIBRARIES 29

CUDA Device A NVIDIA® graphics processor with support for CUDA 8.0
and compute capability 3.0 is required for the CUDA version 3. Furthermore,
500 MB of VRAM are required. The CPU version does not require a graphics
card.

Disk Space The required disk space depends on the operating system. For
Windows 10, around 3 MB are used. In addition, space for the generated
images is required. We recommend 1 GB of hard drive space.

4.3 Used Code Libraries
The following code libraries were used. The indicated version is the one used
in development. Older or never version might possibly not work with cuRRay.

Boost 1.61 4 Boost is an extensive collection of additions to the C++ stan-
dard library. The library is freely available.

C++ 14 Standard Library 5 The standard library, version 14, is freely
available together with C++.

libpng 1.6.26 6 libpng is the official library to work with PNG files. It is
freely available.

NVIDIA® CUDA 8.0 Runtime 7 The CUDA 8.0 runtime is required to
use the functionality of CUDA devices. The library is freely available, but an
NVIDIA® CUDA device is required.

pngIO 1.1 8 pngIO is a library developed by the author. The library is freely
available and directly contained in the source code of cuRRay.

TCLAP 1.2.1 9 The templatized C++ command line parser (TCLAP) allows
the reading of the command line. The library is freely available and included
in the source code of cuRRay.

yaml-cpp 0.6.0 10 yaml-cpp allows the reading and writing of YAML files.
The library is freely available.

4.4 Quick Start Guide
A quick start guide can be found in appendix E.

3. See https://developer.nvidia.com/cuda-gpus for a detailed list of graphics cards
supporting compute capability 3.0.

4. boost.org
5. cplusplus.com/reference/ and cppreference.com/
6. libpng.org
7. developer.nvidia.com/cuda-toolkit
8. https://gitlab.com/misc-util/pngIO
9. http://tclap.sourceforge.net/
10. https://github.com/jbeder/yaml-cpp

Chapter 5

Program Structure

In this chapter, we discuss the program structure of cuRRay. This includes the
design choices made concerning input, output and parallel code execution.

5.1 Input and Output

User Interaction The user interacts via a text console with the software.
This has the advantage of the software being independent of graphical user in-
terfaces and operating systems. cuRRay accepts information through the com-
mand line, but mostly through the YAML files discussed earlier.

Logging The software copies the entire console output including error mes-
sages into a log file. This log file can be checked after the termination of the
program. Also logging can be configured in certain ways, as mentioned later
on.

File Formats The software utilises YAML (.yml) for configuration files,
ASCII text files (.txt) for output information files, PNG files (.png) for im-
ages and CSV files (.csv) for detailed pixel information.

5.2 Parallel Code Execution
cuRRay utilizes two different types of processors: CPUs (central processing
units) and GPUs (graphical processing units). Both allow parallel execution
of code by themselves, which is a feature we use in cuRRay. cuRRay makes use
of NVIDIA® CUDA to access the GPU of a computer system alongside its
CPU.

30

5.2. PARALLEL CODE EXECUTION 31

5.2.1 CPU 1

CPU stands for central processing unit. Every computer has at least one CPU.
CPUs are specialized in carrying out complex and heterogeneous calculations.

Cores Most modern CPUs possess multiple cores, which is why they are
also called multi-core CPUs. Each core can execute code independently of the
others. CPUs are mostly designed for functional parallelism, that is problems
where different types of tasks are worked on simultaneously.

Threads In most modern operation systems the developer does not have to
worry about writing code for single cores. Instead they write so-called threads.
The operating system then decides how threads are executed in parallel on
the CPU. Often a thread is only running for a very short amount time at the
time: the operating system switches quickly between the execution of different
threads; that way, more threads than the number of cores can be executed.
The quickly alternating serial execution of threads combined with the physical
parallelity of modern CPUs gives the illusion of many threads being executed
in parallel.

Processes Threads belong to a process. Usually, a process is assigned to every
running program 2. Each process has one thread to start with, the so-called
main thread. Others can be started at runtime. Figure 5.2.1 shows a possible
arrangement of processes and threads.

process process process

operating system

Figure 5.2.1: Possible combination of processes and threads. Threads are represented
by red rectangles.

CUDA Version The CUDA version uses the main thread to read command
line input and manage GPUs. This thread then starts new threads, one for
each GPU in use. These threads make sure that all GPUs are working in
parallel.

CPU Version The CPU version also uses the main thread to read input. It
then creates one thread per CPU core to be used in the calculations. These
secondary threads compute the images in parallel.

1. The first four sections of this chapter are based on [LD10.1, Chapter 37].
2. However, a program can often create additional processes.

5.2. PARALLEL CODE EXECUTION 32

5.2.2 GPU 3

GPU stands for graphics processing unit. GPUs are usually cards or chips
connected to the motherboard of a computer. They were originally designed
to handle graphics calculations. However, they can also solve different tasks.
This universality is called GPGPU (General purpose computation on graphics
processing unit).

GPUs can be considered as small computers in many ways: they contain
one or more graphics processor (also known as stream processors in CUDA)
and they have a special kind of memory, so-called VRAM (video ram).

CUDA Cores Graphics processors are quite different from CPUs. GPUs
have a much larger number of cores than CPUs. The cores of a GPU are
called CUDA cores in CUDA. They have difficulties with complex algorithms
containing many logical branches compared to the cores of a CPU. They how-
ever excel at completing a large number of similar task in parallel. This type of
parallelism is called data parallelism, since the cores are working on different
pieces of data as opposed to different tasks.

Kernel Programs which are executed in graphics processors are called kernels.
Kernels can be launched from a traditional CPU program. A kernel’s code
is usually executed many times in parallel. CUDA provides two divisions to
organise the parallel instances of a kernel.

Blocks The first division is called blocks. Blocks form a three-dimensional,
virtual grid. The developer has to choose the dimensions of this grid. Each
GPU has a maximum grid size which can be determined at runtime.

A block is never spread over more than one graphics processor. However,
one graphic processor can handle multiple blocks at the same time.

Threads Blocks are further divided into threads. Each block of a kernel has
the same amount of threads. Threads are arranged like blocks in a virtual
three-dimensional grid, whose dimensions have to be provided by the devel-
oper as well. Each thread is executed on a separate CUDA core. This is why
the number of threads per block should not exceed the number of CUDA cores
per graphics processor. Threads of the same block can communicate and syn-
chronize with each other. Threads are always grouped in so-called warps of
32. Figure 5.2.2 shows a possible arrangement of blocks and threads inside a
kernel. Chapter 6.1 deals with the dimensions of the grid used by cuRRay.

These and further restrictions decide the optimal grid configuration for
a given problem. The CUDA occupancy calculator 4 can be used to find the
optimal configuration. In chapter 6.1 we will discuss the dimensions of the
grids used in cuRRay.

Applications cuRRay utilises CUDA for raytracing. This job’s data is highly
parallel; thus, an implementation using CUDA is suitable. The photons, that

3. This chapter is bases on [CJ14.1, chapter 3].
4. developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls

5.2. PARALLEL CODE EXECUTION 33

block block block

kernel

Figure 5.2.2: Possible dimensions of the block and thread grid within a kernel. The
threads are represented as red squares.

is pixels, are independent of each other. This allows us to assign a thread to
each photon. The blocks now need to be sized such that the load is evenly
spread over the entire GPU.

Chapter 6

Raytracing

As described in chapter 4.1, cuRRay uses a raytracing algorithm to calculate
the colour and redshift of each pixel. In this chapter, we outline this algorithm.

Basic Idea For each pixel, cuRRay calculates the corresponding light ray
backwards. Since the Kerr-Newman metric allows time reversal 1, we can cal-
culate light rays backwards in the same way we would calculate them forwards.
A light ray is uniquely determined by its starting position and initial direc-
tion. In our case, where light rays are being calculated backwards, they are
thus uniquely determined by the position of the observer (their final position)
and the direction of the ray incoming at the observer (their final direction).

We think of our reversed light rays as rays originating at the observer with
initial velocities set to the negative of the incident velocities of the real rays.
We calculate these new light rays forwards to find the sources of the real rays.
Another way to think of this, is to imagine the observer sending out rays for
each pixel. The reversed light rays obey the geodesic equations. We thus have
to solve these.

6.1 Grid Layout
We describe here, how the algorithm is parallelly spread over the CUDA cores
of the GPU to reach maximum efficiency.

GPUs Because of slow data transfer between different GPUs, only one GPU
is used per image. If a system contains more than one GPU however, multiple
frames can be rendered in parallel.

Kernels, Threads and Blocks The raytracing algorithm consists of a sin-
gle kernel, which integrates the geodesic equations for every pixel. We will
investigate the kernel further down.

A single thread is used per pixel, that is, per light ray. The task is split
into multiple blocks as to achieve maximum efficiency. To calculate the most

1. As seen in chapter 2.2, only the direction of rotation of a rotating black hole is then
reversed. All other properties of spacetime remain the same.

34

6.2. FRAMES 35

efficient grid structure, cuRRay applies the following procedure 2:

1. Every thread requires a number of so-called registers, storage space for
variables used in the calculations. cuRRay calculates the number of reg-
isters required per warp while taking into account that registers are
always organised in groups of 256 per warp (this restriction is called
register granularity).

2. The number of registers per graphics processor is limited. cuRRay there-
fore calculates the maximum number of concurrently running warps per
graphics processor. Warps always come in groups of four (warp granu-
larity), this is also taken into account by the software.

3. The maximum amount of warps per block is then calculated. Here, fur-
ther hardware limits and warp granularity are taken into account.

4. If more warps fit a block than can be executed simultaneously on a
graphics processor, one block per graphics processor is chosen. Its size
is chosen such that all threads run in parallel while maximizing the
occupation of the processor. The next step is skipped.

5. If a maximally sized block cannot occupy the whole processor, cuRRay
splits the maximum amount of warps per processor into 2, 3, 4 and 5
evenly sized blocks and takes the split that has the highest occupation.
The block size is computed according to the chosen split.

6. The threads (one for every pixel) are then spread across multiple blocks
of the size previously calculated.

Leftover Threads Generally, more threads are started than required, be-
cause every block has the same size. Those threads are immediately termi-
nated. At most one block contains such leftover threads.

6.2 Frames
The scene file is loaded before raytracing starts. cuRRay creates a stack with
every frame to draw.

CUDA Version Every activated GPU can fetch frames from the top of this
stack. The frame is loaded into VRAM and the explicit values of animated
settings are computed. Then the frame is calculated by running the raytracing
kernel. Output files are subsequently created according to the settings. The
GPU can then fetch another frame. This way, all frames are computed by
potentially multiple GPUs (multiple frames are computed in parallel, while
multiple pixels of the same frame are also computed in parallel).

2. The exact code is found in the source code file gpuManager.cpp.

6.3. INITIAL VALUE PROBLEM 36

CPU Version The CPU version does not complete the stack in parallel, but
in serial. The current frame is loaded into regular memory and animated values
are computed. Next, the raytracing algorithm is being run in parallel using
different threads (that is, multiple pixels of the same frame are calculated in
parallel). Output happens in the same manner as for the GPU version. Once
a frame is terminated, the next one is fetched until the stack is empty.

6.3 Initial Value Problem
The geodesic of a photon is uniquely determined by curvature of spacetime on
one hand and by a starting position and velocity, called the initial values, on
the other hand.
System of Differential Equations The equations (2.3.8), (2.3.9), (2.3.10)
and (2.3.11) form a system of differential equations that determines the in-
fluence of spacetime curvature on the geodesics. This system is integrated by
cuRRay.
Initial Values This system of differential equations has infinitely many so-
lutions, especially one for every possible light ray in spacetime. To find the
solution corresponding to the light ray we are interested in, we need initial
values: Initial position and velocity.

The initial position xα(λ = 0) of every (backwards) photon is the position
of the observer. The initial velocity uα(λ = 0) can be calculated from the
position and orientation of the observer. From these initial values we can
calculate E and L according to the equations (2.3.5) and (2.3.6).
Initial Value Problem The initial values xα(λ = 0), uα(λ = 0) together
with the system of differential equations forms a so-called initial value problem.
This problem is solved by cuRRay using integration for each light ray.

6.4 Computation of the Initial Velocity
For every frame, cuRRay computes the initial velocities uα0 = dxα/dλ (λ = 0)
of the light rays from the position, the orientation and field of view of the
observer as well as the frame size.
Inertial Reference Frame We calculate these velocities first in the local
inertial reference frame of the observer. We choose the flat Minkowski ηαβ =
diag(−1, 1, 1, 1) for this frame. This means, that the spatial part of every vector
is a Cartesian vector.

Since cuRRay only handles static observers, we cannot place observers in-
side the ergosphere.
Construction of the Velocity Vectors We imagine Cartesian coordinates
in our frame. The observer is centred at the origin and looks down the x axis.
We span a rectangular screen in front of the observer, evenly divided into
pixels. The resolution of the screen reflects the dimensions of the frame.

6.4. COMPUTATION OF THE INITIAL VELOCITY 37

1

b
i

ua
0

h

ua
0

j

vfov
hfov

x

z

x

y

Figure 6.4.1: Construction of the initial velocity vector in Cartesian coordinates for
the pixel (i, j). b and h are the width (b stands for „Breite“, „width“ in German) and
height of the frame. The observer resides at the origin.

The screen is parallel to the yz plane and is located at x = 1. The rays
passing through the origin and the corners of the screen limit the field of view.
The with and height of the screen is now scaled as to match the field of view
angles specified in the scene file (hfov and vfov).

The coordinates of the current pixel on the screen is computed. The spatial
part of the initial velocity vector for that pixel is collinear to the position vector
of the point on the screen at these coordinates. We normalise the length of
the spatial part to one and set the time component to one as to create a null
vector.

Figure 6.4.1 shows the construction of the initial velocity vector for the
pixel (i, j).

Orientation The coordinate vector fields ∂r, ∂θ and ∂ϕ are all perpendicular
to each other, as we can see from equation (2.2.1). It is therefore possible
to orient the local Cartesian coordinates in the following manner: The basis
vector of the x axis is chosen parallel to ∂r and points the same way. The same
can be done for the basis vector of y with ∂θ and the basis vector of z with ∂ϕ.
Figure 6.4.2 shows the orientation of the local Coordinates. This orientation
leads to the observer pointing at the black hole by default.

The observer can additionally be rotated about the three Cartesian axes
by roll, pitch and yaw angles in this order: First the frame is rolled around
the negative x axis, then it is pitched around the negative z axis and finally
it is yawed around the negative y axis. These angles can be configured and
animated in the scene file. The three rotation are applied to all initial velocity
vectors after they have been computed.

Coordinate Transformation Before the vectors can be used in raytracing,
they need to be transformed to BL coordinates. We are looking for a coordinate
transformation Ψα

β that transforms our vectors in local Cartesian coordinates

6.5. FOURTH ORDER RUNGE-KUTTA PROCEDURE 38

x

y

z

∂r

∂θ

Figure 6.4.2: Orientation of the local Cartesian coordinates relative to the BL coor-
dinates. We show a cut ϕ = konst through spacetime. The Cartesian coordinate basis,
two BL coordinate vector field lines and the screen of the observer are shown.

to global BL coordinates:
vαBL = Ψα

βv
β
C. (6.4.1)

The transformation needs to orient the Cartesian basis vectors as described
earlier and needs to make sure the observer is stationary. For a derivation of
this transformation, see appendix D.

The transformed vectors are then used as initial values in the raytracing
algorithm.

6.5 Fourth Order Runge-Kutta Procedure
The initial value problem described above cannot be solved analytically. To
solve it and calculate x(λ), we need to integrate the differential equations
numerically.

Single Step Procedure If

y′(x) = f(x, y(x)), y(x0) = y0, y′(x0) = y′0 (6.5.1)

is the initial value problem and y(x) is the wanted solution, we can approx-
imate the continuous function y(x) by discrete values yi at the positions xi
(see [BI78.1, P. 709]).

To this end, we introduce a potentially variable step size h, such that

xi+1 = xi + h. (6.5.2)

y will then be given by the difference equation

yi+1 = yi + hf̂(xi, yi), y(x0) = y0 (6.5.3)

at the discrete positions. f̂ is called the step function. It depends on the algo-
rithm. All numerical methods operating according to (6.5.3) are called single

6.5. FOURTH ORDER RUNGE-KUTTA PROCEDURE 39

step procedures, since every discrete value yi only depends on the value of the
previous step. See [BI78.1, P. 709].
Errors The lowest order of the error in h due to approximation determines
the accuracy of the algorithm. The higher the order, the better the numerical
approximation. Usually, we can only guess the total, absolute error (If we
happened to know the accurate solution, the numerical approximation would
be rather useless). See [BI78.1, S. 709].
RK4 Procedure To solve the initial value problem, we use the fourth order
Runge-Kutta algorithm (short: RK4). RK4 is a single step procedure with error
of order h5.

The step function for the RK4 algorithm is given by

f̂(xi, yi) =
1

6
(K1 + 2K2 + 2K3 +K4)

K1 = f (xi, yi)

K2 = f

(
xi +

h

2
, yi +

h

2
K1

)
K3 = f

(
xi +

h

2
, yi +

h

2
K2

)
K4 = f (xi + h, yi + hK3) . (6.5.4)

f̂ is a weighted average of f at different sub-steps. See [BI78.1, P. 710].
Solving the Geodesic Equations The geodesic equations are coupled,
that is, they have to be integrated simultaneously since they depend on each
other. We achieve this by calculating each sub-step for every equation before
continuing with the next sub-step.
First Order Equations The equations (2.3.8) and (2.3.9) are of the form
y′ = f(y). Those can easily be integrated with RK4. A single step in xt is
calculated as follows:

xti+1 = xti + h
1

6
(Xt

1 + 2Xt
2 + 2Xt

3 +Xt
4)

Xt
1 = t′ (xαi)

Xt
2 = t′

(
xαi +

h

2
Xα

1

)
Xt

3 = t′
(
xαi +

h

2
Xα

2

)
Xt

4 = t′ (xαi + hXα
3) . (6.5.5)

A step in xϕ is computed analogously:

xϕi+1 = xϕi + h
1

6
(Xϕ

1 + 2Xϕ
2 + 2Xϕ

3 +Xϕ
4)

Xϕ
1 = ϕ′ (xαi)

6.5. FOURTH ORDER RUNGE-KUTTA PROCEDURE 40

Xϕ
2 = ϕ′

(
xαi +

h

2
Xα

1

)
Xϕ

3 = ϕ′
(
xαi +

h

2
Xα

2

)
Xϕ

4 = ϕ′ (xαi + hXα
3) . (6.5.6)

The prime symbols denote derivatives by λ. t′ and ϕ′ are given by the equations
(2.3.8) and (2.3.9).

Second Order Equations The equations (2.3.10) and (2.3.11) are of the
form y′′ = f(y, y′). To get y, we need to integrate twice. Those are also coupled
to the other equations and thus need to be integrated simultaneously as well.

A step in xr is given by

xri+1 = xri + h
1

6
(Xr

1 + 2Xr
2 + 2Xr

3 +Xr
4)

Xr
1 = ur

Xr
2 = ur +

h

2
U r
1

Xr
3 = ur +

h

2
U r
2

Xr
4 = ur + hU r

3

uri+1 = uri + h
1

6
(U r

1 + 2U r
2 + 2U r

3 + U r
4)

U r
1 = r′′ (xαi , u

α
i)

U r
2 = r′′

(
xαi +

h

2
Xα

1 , u
α
i +

h

2
Uα
1

)
U r
3 = r′′

(
xαi +

h

2
Xα

2 , u
α
i +

h

2
Uα
2

)
U r
4 = r′′ (xαi + hXα

3 , u
α
i + hUα

3) (6.5.7)

A step in xθ is given by

xθi+1 = xθi + h
1

6
(Xθ

1 + 2Xθ
2 + 2Xθ

3 +Xθ
4)

Xθ
1 = uθ

Xθ
2 = uθ +

h

2
U θ
1

Xθ
3 = uθ +

h

2
U θ
2

Xθ
4 = uθ + hU θ

3

uθi+1 = uθi + h
1

6
(U θ

1 + 2U θ
2 + 2U θ

3 + U θ
4)

6.6. STEP SIZE CONTROL 41

U θ
1 = θ′′ (xαi , u

α
i)

U θ
2 = θ′′

(
xαi +

h

2
Xα

1 , u
α
i +

h

2
Uα
1

)
U θ
3 = θ′′

(
xαi +

h

2
Xα

2 , u
α
i +

h

2
Uα
2

)
U θ
4 = θ′′ (xαi + hXα

3 , u
α
i + hUα

3) (6.5.8)

r′′ and θ′′ are given by the equations (2.3.10) and (2.3.11).
The equations (6.5.5), (6.5.6), (6.5.7) and (6.5.8) describe the algorithm

used by cuRRay for a single RK4-step.

6.6 Step Size Control
We control the step size h with an algorithm used in [PD11.1]. h adjusts to
the fastest changing coordinate:

h = c · max
(
|ut|, |ur|, |uθ|, |uϕ|

)−1
. (6.6.1)

c is configurable positive constant. The software uses c = 1/32 by default, but
other values can be set in the system configuration file.

To make sure that h is sufficiently small, we can make c smaller and smaller.
As soon as the image does no longer change, when further shrinking c, the
constant is small enough. c = 1/32 was tested to be accurate enough for
almost all thinkable scenarios.

6.7 Monitoring the Velocity Vector
Since photons travel on null geodesics, their velocity vectors will always have
magnitude zero. We note that any part of the sum in equation (2.2.1) divided
by the rest always equals -1 (unless we divide by zero, in which case it is
undefined). Comparing against -1 rather than 0 allows for the calculation
of a relative error, which would not have been possible otherwise. We use
this property to monitor the accuracy of the raytracing algorithm. Here, the
time-time component is used to divided the rest, since this component only
becomes zero outside the event horizon exactly on the ergosphere. The chance
of a photon reaching exactly this radial distance in one of the steps is however
extremely small. The error e is calculated as follows:

e ≡
∣∣∣1 + [grr · (ur)2 + gθθ · (uθ)2 + gϕϕ · (uϕ)2 + 2gtϕu

tuϕ
]/[

gtt · (ut)2
]∣∣∣ .

(6.7.1)
e shows whether the raytracing algorithm is correct and whether the step

size control is effective. e is calculated for every step. For every light ray the
average error ē as well as the standard deviation σe of the error is computed.
These values are stored in the detailed pixel data file. We will discuss the
accuracy of cuRRay in chapter 8.1.

6.8. BREAK CONDITIONS 42

6.8 Break Conditions
We stop the integration of a geodesic, if one or more break conditions are
met. Depending on the type of condition, the corresponding pixel is coloured
differently.

Event Horizon The r coordinate of the event horizon is r+ and given by
equation (2.2.5). If the r coordinate of the photon falls below r+ + ϵ, we stop
the integration. ϵ is a configurable positive constant which prevents the step
size from getting arbitrarily small near the horizon. ϵ is 10−2 by default. Pixels
fulfilling this condition are coloured using the event horizon colour.

Scene Boundary We choose the scene boundary rmax to include all objects
and the observer. Also, the boundary can be set manually to a higher value
when choosing a sky image. If the r coordinate of a photon exceeds rmax, we
colour the pixel in the sky colour. If a sky image is configured, the colour is
computed according to chapter 6.10.

Errors If an error occurs during a RK4-step, the pixel is coloured in the error
colour. An error occurs, when either r < 0, θ < 0 or θ > π. We will see reasons
for such errors in chapter 8.1.

Spheres The raytracing algorithm checks after every RK4 step, whether one
of the spheres was hit. This collision detection happens in Cartesian coordi-
nates for the reasons mentioned above. The pixel is coloured according to the
pattern on the sphere.

Accretion Disc If the accretion disc is hit (determined by a similar collision
detection as for spheres, only that this one happens in BL coordinates), the
pixel is coloured according to the pattern on the disc.

6.9 Redshift
cuRRay computes the ratio of receiver frequency ωr (frequency measured by
observer) and sender frequency ωs (frequency of the source) for every light ray
according to equation (3.5.1). The computation is only performed if the source
lies outside the ergosphere. Possible values for the ratio range from 0 to ∞.

If redshift output is configured, an additional PNG file is created for every
frame to store redshift data. The pixels of this file are coloured according to:

R = 255− 255 · arctan
(
ωr

ωs

)
2

π

G = 0

B = 255 · arctan
(
ωr

ωs

)
2

π
. (6.9.1)

Each colour component can take on values from 0 (no intensity) to 255 (max-
imum intensity). A completely red pixel means infinite redshift, a completely

6.10. STARRY SKY 43

blue one infinite blueshift and a purple pixel no shift at all. Pixels correspond-
ing to sources inside the ergosphere are coloured green and pixels of the sky
black.

6.10 Starry Sky
One can configure an image in the scene file to be projected onto the sky. This
allows for instance the depiction of a starry sky behind the black hole.
Image File cuRRay requires a rectangular projection of the sky in form of a
PNG file. The θ and ϕ coordinates of the sky sphere correspond directly to x
and y coordinates in the rectangular projection of the sky:

θ = y · π
h

ϕ = 2π − x · 2π
b
. (6.10.1)

h is the height of the image file and b the width. θ is the zenith angle, ϕ the
azimuth. Figure 6.10.1 shows a rectangular projection of the night sky, which
we will use in chapter 7 to create realistic looking images of black holes.

Figure 6.10.1: Rectangular projection of the night sky. Stars close to the galactic pole
appear stretched due to the projection. Image source: ESO/S. Brunier, [BS09.1].

Asymptotic Flatness Since Kerr-Newman spacetime is asymptotically flat,
we can find an r coordinate R, such that light rays outside of R are no longer
deflected remarkably.

R can be configured in the scene file. If R is larger than the scene bound-
aries, we set rmax (see chapter 6.8) to rmax = R. If R < rmax, the scene
boundary stays at rmax and R is ignored.
Direction Vector We assume that light rays outside the scene boundaries
are no longer deviated strongly. We can thus approximate them by straight

6.11. COMPLETE PIXEL DATA 44

lines in flat spacetime. We further assume the size of the sky sphere to be
infinite, i.e. that the stars are infinitely far away. This is a perfectly plausible
assumption as distances between stars are many times larger than typical
distances within the scene.

As seen from the sky sphere, every photon seems to be coming right from
the centre of the sphere, as the scene appears infinitely small from this distance.
We therefore only care about the velocity vector of light rays leaving the scene
boundary. We transform this velocity vector from BL coordinates to global
Cartesian coordinates using equation (1.5.1):

uαC =
∑
β

∂xαC
∂xβBL

uβBL, (6.10.2)

We calculate the partial derivatives from the equations (2.2.8).
By normalising this Cartesian vector we get the Cartesian direction vector:

na =
uaC
|uaC|

, (6.10.3)

here, |uaC| is the length of the spatial part of uaC. Note the Latin indices,
indicating that they only take on the values {1, 2, 3}.

Sky Point We calculate the angular coordinates θ and ϕ of the point in the
sky pointed at by the direction vector in the following way:

tanϕ =
ny

nx
,

cos θ = nz. (6.10.4)

Using the equations (6.10.1), we can find the coordinates of the pixel in the
sky image and colour the pixel in our frame accordingly.

6.11 Complete Pixel Data
As already mentioned in chapter 4.1, we can choose whether cuRRay should
produce a CSV file with detailed pixel information for each frame. Each pixel
gets a row in the file. The following columns are written: x and y coordinates
of the pixel, R, G and B colour components of the pixel, the amount of RK4
steps that were required, the ratio ωr/ωs, the mean error ē and the standard
deviation σe of the error.

If the redshift was not computed (because the source was inside the ergo-
sphere), the ratio is stored as −1. The redshift is also stored, even if the pixel
is erroneous; In this case, the stored value is undefined.

Chapter 7

Results

In this chapter, we will present and interpret different images created with
cuRRay. All images and corresponding scene files are shown at the end of the
corresponding section. The exact parameters of the image can be read off the
scene files. Appendix E contains a user guide and explains how to interpret
information in the scene files. All images and their corresponding scene file are
contained in the Git repository. See Appendix F.

7.1 Schwarzschild Black Holes
Images of Schwarzschild black holes are suited for the visualisation of many
curvature phenomena, as they are relatively simple to interpret due to the
spherical symmetry of the black hole. Here we show several images generate
by cuRRay of such black holes.

Accretion Disc The figures 7.1.1 and 7.1.2 show a Schwarzschild black hole
with accretion disc (top side green, bottom side magenta) from two different
observer positions. Listing 7.1.1 is th scene file used for both images.

In figure 7.1.1, the disc appears only slightly distorted because the observer
is close to its axis (observer at θ = 5°). The different parts of the disc are thus
distorted symmetrically. Close to the horizon, we can see the bottom side of
the disc: Light originating from this side is bent around the black hole by
roughly 180° and arrives at the observer through the gap between disc and
event horizon.

In figure 7.1.2, the disc is strongly distorted because the observer is located
far away from the axis of symmetry. The part of the disc that would be hidden
behind the hole in absence of gravity is visible as a magnified and bent image:
This happens because the light coming from these parts of the disc is bent
downwards (towards the black hole) and curves around the hole thus arriving
at the observer from above. The evenly spaced sectors of the disc also appear
strongly stretched. The bottom side of the disc is visible because its light also
curves around the hole and arrives at the observer from below.

45

7.1. SCHWARZSCHILD BLACK HOLES 46

Starry Sky behind Black Hole Next, we investigate how the appearance
of the night sky is warped by a black hole. We use the Milky Way panorama
from figure 6.10.1 as our projection. Figure 7.1.3 shows the computed image
and listing 7.1.2 is the corresponding scene file.

The stars right behind the black hole are bent into rings around the hole.
Such ring-like images of astronomical objects are called Einstein rings. Nu-
merous Einstein rings have been found and photographed by telescopes. See
[SP99.1, chapter 2.5.6].

Sphere around Event Horizon Figure 7.1.4 shows a Schwarzschild black
hole encased by a sphere. We chose the radius of the sphere so small, so it
almost touches the horizon. The pattern on the sphere can thus be thought of
as being printed on the horizon. Listing 7.1.3 is the corresponding scene file.

We can see both poles (points, at which the triangles meet) of the black
hole at the same time, because light rays are being bent towards the black
hole, even though we look at the hole from the equator.

Redshift Figure 7.1.5 shows the redshift of an accretion disc that touches
the horizon. Listing 7.1.4 is the corresponding scene file.

The event horizon is completely red, as light from there is infinitely red-
shifted (it looses all of its energy): No light escapes the horizon.

Points on the disc start to become more and more purple, as we move out.
On the outer edge of the disc, almost no redshift occurs.

Blueshift Figure 7.1.6 shows blue- and redshift an observer looking outwards
from just above the horizon sees. The scene is otherwise the same as in figure
7.1.5. Figure 7.1.7 is the corresponding colour image and listing 7.1.5 the scene
file used for both.

We see in the colour image that the sky (white) appears in the middle of
the image and that it is surrounded by the event horizon. In contrast to earlier
images, the sky and the horizon are swapped.

According to the redshift image, light coming from the event horizon is
still infinitely redshifted even tough the observer almost touches the horizon.
Along the disc, the redshift falls off and ultimately fades into blueshift. This
happens because most of the disc is further out than the observer.

Sphere near Schwarzschild Black Hole The figures 7.1.8, 7.1.9 and 7.1.10
show a Schwarzschild black hole with a sphere in different relative positions.
First, the sphere is located between observer and black hole, then it is moved
by 90° along ϕ and finally it is located directly behind the hole as seen from
the observer. Listing 7.1.6 is the corresponding scene file.

In figure 7.1.8, the sphere is located between the hole and the observer. It
appears completely round. Close to the horizon, we make out a thin ring-like
image af the sphere: This images consists of light from the sphere’s backside
that was bent by gravity and travelled all the way around the black hole to
arrive at the observer.

7.1. SCHWARZSCHILD BLACK HOLES 47

In figure 7.1.9, the sphere, the hole and the observer form a right angle.
The sphere is located to the right of the horizon and appears almost round.
On the opposite side of the hole, we see a small sickle-like image of the sphere.
This secondary image again consists of photons being bent around the hole.

In figure 7.1.10, the sphere is directly behind the hole, as seen from the
observer. It appears strongly magnified as an Einstein ring around the black
hole.

7.1. SCHWARZSCHILD BLACK HOLES 48

Figure 7.1.1: Schwarzschild black hole with accretion disc. Zenith angle of the observer:
θ = 5°.

Figure 7.1.2: Schwarzschild black hole with accretion disc. Zenith angle of the observer:
θ = 85°.

7.1. SCHWARZSCHILD BLACK HOLES 49

Figure 7.1.3: Image of Schwarzschild black hole with night sky in the background.

Figure 7.1.4: Schwarzschild black hole with sphere around the horizon.

Figure 7.1.5: Redshift due to a Schwarzschild black hole. The colour of the sky was
set to white.

7.1. SCHWARZSCHILD BLACK HOLES 50

Figure 7.1.6: Blueshift due to a Schwarzschild black hole. The sky colour was set to
white.

Figure 7.1.7: The observer is looking out from a point just above the horizon of a
Schwarzschild black hole.

7.1. SCHWARZSCHILD BLACK HOLES 51

Figure 7.1.8: Sphere between Schwarzschild black hole and observer.

Figure 7.1.9: Sphere next to a Schwarzschild black hole. The sphere is rotated by 90°
ahead of the observer along ϕ.

Figure 7.1.10: Sphere behind a Schwarzschild black hole.

7.1. SCHWARZSCHILD BLACK HOLES 52

Listing 7.1.1: Accretion disc of a
Schwarzschild black hole

1 ---
2 metric:
3 m: 1
4 a: 0
5 q: 0
6 sky_color: [255, 255,

255]
7 horizon_color: [0, 0, 0]
8 observer:
9 r: 30

10 theta: [linear , 5,
175]

11 phi: 0
12 hfov: 70
13 accretion:
14 color1: [0, 255, 0]
15 resolution: [2, 12]
16 radius: [6, 15]

Listing 7.1.2: Starry sky behind
Schwarzschild black hole

1 ---
2 metric:
3 m: 1
4 a: 0
5 q: 0
6 horizon_color: [0, 0, 0]
7 observer:
8 r: 50
9 theta: 90

10 phi: 0
11 hfov: 100
12 skymap:
13 image: sky.png
14 boundary: 50

Listing 7.1.3: Schwarzschild black hole
with sphere around horizon

1 ---
2 metric:
3 m: 1
4 a: 0
5 q: 0
6 sky_color: [255, 255,

255]
7 horizon_color: [0, 0, 0]
8 observer:
9 r: 10

10 theta: 90
11 phi: 0
12 hfov: 70
13 sphere:
14 color: [0, 0, 255]
15 resolution: [4, 8]
16 r: 0
17 theta: 90
18 phi: 0
19 radius: 2.1

Listing 7.1.4: Redshift around
Schwarzschild black hole

1 ---
2 metric:
3 m: 1
4 a: 0
5 q: 0
6 sky_color: [255, 255,

255]
7 horizon_color: [0, 0, 0]
8 observer:
9 r: 30

10 theta: 85
11 phi: 0
12 hfov: 70
13 accretion:
14 color1: [0, 255, 0]
15 resolution: [2, 12]
16 radius: [2, 15]

7.2. KERR BLACK HOLES 53

Listing 7.1.5: Blueshift around
Schwarzschild black hole

1 ---
2 metric:
3 m: 1
4 a: 0
5 q: 0
6 sky_color: [255, 255,

255]
7 horizon_color: [0, 0, 0]
8 observer:
9 r: 2.1

10 theta: 85
11 phi: 0
12 yaw: 180
13 hfov: 70
14 accretion:
15 color1: [0, 255, 0]
16 resolution: [2, 12]
17 radius: [2, 15]

Listing 7.1.6: Sphere close to a
Schwarzschild black hole

1 ---
2 metric:
3 m: 1
4 a: 0
5 q: 0
6 sky_color: [255, 255,

255]
7 horizon_color: [0, 0, 0]
8 observer:
9 r: 25

10 theta: 90
11 phi: 0
12 hfov: 70
13 sphere:
14 color: [0, 0, 255]
15 resolution: [4, 8]
16 r: 8
17 theta: 90
18 phi: [linear , 0, 350]
19 radius: 3

7.2 Kerr Black Holes
Here, we compare images of uncharged, rotating black holes with images of
Schwarzschild black holes. Electrically uncharged and rotating black holes are
called Kerr black holes because their metric is the Kerr metric. The Kerr-
Newman metric becomes the Kerr metric when Q = 0, M ̸= 0 and a ̸= 0.
Accretion Disc around Kerr Black Hole Analogously to the figures 7.1.1
and 7.1.2 showing Schwarzschild black holes, the figures 7.2.1 and 7.2.2 show
Kerr black holes in the same situation. The only difference is that now a ̸= 0.
The observer is again located at the two positions θ = 5° and θ = 85° in the
two figures. Listing 7.2.1 is the corresponding scene file.

Figure 7.2.1 differs from figure 7.1.1, in that the disc is distorted in a
whirling manner near the event horizon. This is the result of the frame-
dragging effect. The observer is roughly looking down the negative z axis
(θ = 0° is the black hole’s rotation axis). We thus would think that the space-
time is whirled according to the right-hand rule in a counter-clockwise direc-
tion. We see quite the opposite: photons are dragged into a clockwise motion
(Photons dragged clockwise result in the image being dragged clockwise too,
since the photons are emitted by the imaged objects). This discrepancy can
easily be explained: it stems from the fact that we invert time when we trace

7.2. KERR BLACK HOLES 54

the rays backwards. Of course, when we invert time, the black hole spins in
the opposite direction.

Correct results are obtained, when we interpret a positive rotation pa-
rameter a to correspond to a clockwise rotation of the black hole around the
positive z axis (that is, according to the left-hand rule).

In figure 7.2.2 the observer is located at θ = 85°. The frame-dragging effect
is visible through the distortion of the sectors on the disk.

Furthermore, the event horizon seems to bulge out on one side. This is
because photons only manage to cross the ergosphere on one side of the axis:
when they move against the flow of spacetime, they fall into the hole, otherwise
they come through. Generally speaking, a photon moving against the flow of
spacetime will require more coordinate time to cross a certain distance than
one moving with the flow. Since both are subject to the same radial gravitation
field, the one travelling longer falls in deeper towards the horizon. This is were
the asymmetry of the image comes from.

A further consequence of the frame-dragging effect is the asymmetry of
the photon sphere. In fact, the photon sphere is not a sphere but a rather
complicated surface. See [CC13.1] for a rigorous discussion of a rotating black
hole’s photon sphere.

7.2. KERR BLACK HOLES 55

Figure 7.2.1: Kerr black hole with accretion disc. Zenith angle of observer: θ = 5°.

Figure 7.2.2: Kerr black hole with accretion disc. Zenith angle of observer: θ = 85°.

7.3. REISSNER-NORDSTRÖM BLACK HOLES 56

Listing 7.2.1: Accretion disc of a Kerr black hole
1 ---
2 metric:
3 m: 1
4 a: 1
5 q: 0
6 sky_color: [255, 255, 255]
7 horizon_color: [0, 0, 0]
8 observer:
9 r: 30

10 theta: [linear , 5, 175]
11 phi: 0
12 hfov: 70
13 accretion:
14 color1: [0, 255, 0]
15 resolution: [2, 12]
16 radius: [6, 15]

7.3 Reissner-Nordström Black Holes
Lastly, we would like to compare a Reissner-Nordström black hole (a = 0,
Q ̸= 0) with a Schwarzschild black hole.

Reissner-Nordström black holes do not differ much externally from Schwarz-
schild ones. The difference lies mostly within the event horizon: Reissner-
Nordström black holes can, just like the general Kerr-Newman black holes,
have two event horizons. We are however not concerned about the inner fea-
tures of black holes, since cuRRay stops the integration of geodesics at the
outer event horizon.

Sphere behind Reissner-Nordström Black Hole A visible difference
is the smaller event horizon of Reissner-Nordström black holes compared to
Schwarzschild black holes. This can be seen directly in equation (2.2.5).

Figure 7.3.1 shows the same scene as figure 7.1.10 only with Q ̸= 0. Listing
7.3.1 is the corresponding scene file. The event horizon appears smaller than
in figure 7.1.10.

7.3. REISSNER-NORDSTRÖM BLACK HOLES 57

Figure 7.3.1: Sphere behind Reissner-Nordström black hole.

Listing 7.3.1: Sphere behind Reissner-Nordström black hole
1 ---
2 metric:
3 m: 1
4 a: 0
5 q: 1
6 sky_color: [255, 255, 255]
7 horizon_color: [0, 0, 0]
8 observer:
9 r: 25

10 theta: 90
11 phi: 0
12 hfov: 70
13 sphere:
14 color: [0, 0, 255]
15 resolution: [4, 8]
16 r: 8
17 theta: 90
18 phi: [linear , 0, 350]
19 radius: 3

Chapter 8

Discussion

Here, we will discuss several aspects of cuRRay and mention possible improve-
ments. We begin with a discussion of the software’s reliability and investigate
potential software errors. Subsequently, we discuss performance, then possible
extensions of the source code and finally we mention GRay, the software, from
which cuRRay got the step size control.

8.1 Reliability of cuRRay

cuRRay was tested for many hours during and after development. All detected
errors (including some wrong Christoffel symbols) were corrected.

We further tested the implemented algorithms in different ways to detect
specific errors. For instance, we tested the raytracing algorithm with different
parametrisations of the geodesics (which is of course allowed mathematically)
and could detect and correct an erroneous equation of motion.

Certain errors are known but were not corrected, because they correspond
to rare special cases and their fix would not be worth the effort. The following
known errors can still occur:
Operating System-induced Errors Operating system errors, like running
out of memory or hardware errors are very hard to detect and fix. Such errors
generally crash the software. These errors can be prevented by complying with
the system requirements in chapter 4.2.

Under Windows, it is possible (and even quite likely) that the CUDA
version crashes due to the TDR timer. To prevent these crashes, the timer
needs to be configured or disabled. See chapter E.5.
Faulty User Input If the scene file contains impossible settings (like M2 <
a2 + Q2 or observer inside event horizon), the raytracing might fail, as the
behaviour is undefined. The user must manually ensure the correctness of the
settings.
Numerical Imprecision in RK4 The numerical inaccuracy of the RK4
algorithm is very hard to measure, since the correct geodesics are unknown.
However, accuracy increases, as the step size is decreased.

58

8.2. EFFICIENCY OF CURRAY 59

Equation (6.6.1) controls the step size used by the RK4 algorithm. The
factor c allows the manual tweaking of the step size. The following manual
procedure allows for accurate images: We draw the same frame multiple times
with ever decreasing c. As soon as the pixels of two consecutive images no
longer differ, the step size is accurate enough and we can use it in computations
of similar scenes. We found the factor c = 1/32 (which is also the default
value) to be sufficient for resolutions up to 2000 by 2000 pixels and most scene
configurations. Even extreme situations like observers just outside the horizon
were successfully tested with this value.

Coordinate singularities The polar axis (θ = 0 and θ = π respectively) is
a coordinate singularity, as θ and ϕ are discontinuous there. RK4 steps can
only be calculated in a continuous region of the coordinate system. If a step
of a ray crosses the polar axis, we expect the raytracing of that ray to yield
wrong results.

Such errors quickly show, as coordinates reach invalid values (r < 0, θ < 0
or θ > π). cuRRay detects these errors and draws erroneous pixels using a
configurable colour. Such errors can easily be avoided, as they only occur, when
rays hit the axis perfectly. We can easily choose frame sizes or orientations of
the observer, such that this does not happen. And of course, the observer
should not be positioned on the polar axis. Figure 8.1.1 shows a Schwarzschild
black hole where the settings have deliberately been chosen such as to generate
faulty pixels.

Figure 8.1.1: Schwarzschild black hole with errors (blue pixels) along the axis. The
dimensions of the frame were chosen to be odd (31x31 pixels), to make sure that pixels
in the center of the image perfectly hit the axis. To better show the effect, we used
small frame dimensions and set the event horizon colour to red.

8.2 Efficiency of cuRRay

cuRRay’s performance was not compared with existing software.

Comparisons between the CUDA version and the CPU version showed the

8.3. OUTLOOK 60

CUDA version to be generally faster than the CPU version. The CUDA version
was at least twice as fast as the CPU version when tested on one computer
(Intel Core i7-4770 @ 3.4 GHz, ASUS GTX-760 DirectUI II OC) and even up
to four times faster when tested on another machine (Intel Core i7-6700K @
4.0 GHz, EVGA GTX-1070 Founder’s Edition). The superiority of the CUDA
version could be clearly demonstrated.

The performance of the software was greatly improved during development
(an increase in speed of roughly 200 times since the first prototype). Yet,
mostly the CUDA version could still be improved: Investigations with the
NVIDIA Visual Profiler 1 showed that the graphics card is waiting on VRAM
data roughly halve of the time. By using different types of VRAM, this waiting
time could be minimised and the performance further increased.

8.3 Outlook
cuRRay can be used to visualise Kerr-Newman spacetime and could be em-
ployed as a learning aid for students of relativity. New functions could render
the visualisations even more interesting:

For instance, one could store the single steps of a geodesic and plot them in
a three-dimensional graph to get an idea of the shape of the geodesic. Or, one
could extend raytracing to trajectories of other bodies like massive particles.
This way one could compute the orbits of small asteroids. Lastly, one could use
RK4 to perform raytracing in other spacetimes like Kruskal-Szekeres spacetime
inside a Schwarzschild black hole.

8.4 Existing Software
We would like to point out GRay [CC13.1], a software with similar functionality
as cuRRay: GRay is also a CUDA-accelerated raytracer for relativistic space-
times around black holes which uses the RK4 algorithm. cuRRay employs the
step size control of GRay.

1. See https://developer.nvidia.com/nvidia-visual-profiler.

Appendix A

First Order Geodesic
Equations

Here, we simplify the geodesic equations for t and ϕ using the Killing vector
fields of Kerr-Newman spacetime from second order equations to first order
equations.

The Killing vector fields of Kerr-Newman spacetime give the following
constants of motion:

E = gttu
t + gtϕu

ϕ (A.1)
and

L = gϕϕu
ϕ + gtϕu

t. (A.2)
See chapter 2.3.1. The equations (A.1) and (A.2) contain the velocity compo-
nents ut = dt/dλ and uϕ = dϕ/dλ. We can solve for those components and
obtain first order equations for t and ϕ.

First we solve equation (A.2) for dϕ/dλ:

dϕ

dλ
=

L− gtϕdt/dλ

gϕϕ
(A.3)

and insert into equation (A.1):

E = −gtt
dt

dλ
− gtϕ

(
L− gtϕ

dt

λ

)/
gϕϕ . (A.4)

We now solve for dt/dλ:

dt

dλ
=

(
E + L

gtϕ
gϕϕ

)/(
g 2
tϕ

gϕϕ
− gtt

)
. (A.5)

Finally, we multiply by gϕϕ and get the first order differential equation
describing the evolution of the t coordinate.

dt

dλ
=

E · gϕϕ − L · gtϕ
gϕϕgtt − g 2

tϕ

. (A.6)

61

62

Similarly, we obtain the equation for ϕ:

dϕ

dλ
=

L · gtt − E · gtϕ
gttgϕϕ − g 2

tϕ

. (A.7)

Appendix B

Christoffel Symbols of
Kerr-Newman Spacetime

In this appendix, we will list the required Christoffel symbols for the equations
(2.3.10) and (2.3.11). First, we show the procedure for calculating the symbols,
then we demonstrate the derivation for one symbol and finally, we list all
relevant symbols.

Relevant Christoffel Symbols The Christoffel symbols need to be com-
puted from the metric components according to equation (1.7.9):

Γα
βγ = gαδ

1

2
(∂γ gδβ + ∂βgδγ − ∂δgβγ). (B.1)

Before we invert or differentiate the components of the metric, we note that
only the Christoffel symbols with α ∈ {r, θ} need to be computed. This will
simplify our work quite a bit.

Inverse Metric We require the components of the inverse metric tensor in
equation B.1. They are given by equation (1.6.5). If we think of the components
of the metric tensor as the components of a 4x4-matrix, then the components
of the inverse metric tensor are the components of the inverse of said matrix.

According to equation (2.2.1), the metric of Kerr-Newman spacetime has
the following structure:

gαβ =


gtt 0 0 gtϕ
0 grr 0 0
0 0 gθθ 0
gtϕ 0 0 gϕϕ

 . (B.2)

63

64

The inverse metric is therefore:

gαβ =



−
gϕϕ

g 2
tϕ − gttgϕϕ

0 0
gtϕ

g 2
tϕ − gttgϕϕ

0
1

grr
0 0

0 0
1

gθθ
0

gtϕ
g 2
tϕ − gttgϕϕ

0 0 − gtt
g 2
tϕ − gttgϕϕ


. (B.3)

Now we only need the inverse metric components with α ∈ {r, θ}. These
are

grr =
1

grr
=

∆

Σ
, (B.4)

gθθ =
1

gθθ
=

1

Σ
. (B.5)

Since only terms gαβ with α = β are required, we only need to sum over a
single term in equation (B.1) for each Christoffel symbol.

Derivatives of the Metric Components The biggest challenge is to
differentiate the metric components. But even here, some of the work can
be spared by realising that the metric is independent of t and ϕ, that is
∂tgαβ = ∂ϕgαβ = 0. We can simplify the expressions for single Christoffel
symbols by crossing out vanishing terms:

Γr
tt = −1

2
grr∂rgtt

Γr
rr =

1

2
grr∂rgrr

Γr
θθ = −1

2
grr∂rgθθ

Γr
ϕϕ = −1

2
grr∂rgϕϕ

Γr
tr = 0

Γr
tθ = 0

Γr
tϕ = −1

2
grr∂rgtϕ

Γr
rθ =

1

2
grr∂θgrr

Γr
rϕ = 0

Γr
θϕ = 0

Γθ
tt = −1

2
gθθ∂θgtt

Γθ
rr = −1

2
gθθ∂θgrr

Γθ
θθ =

1

2
gθθ∂θgθθ

Γθ
ϕϕ = −1

2
gθθ∂θgϕϕ

Γθ
tr = 0

Γθ
tθ = 0

Γθ
tϕ = −1

2
gθθ∂θgtϕ

Γθ
rθ =

1

2
gθθ∂rgθθ

Γθ
rϕ = 0

Γθ
θϕ = 0.

(B.6)

Next, we need to evaluate the expressions for the Christoffel symbols. We
show as an example the evaluation of Γr

tt. The other Christoffel symbols are
then calculated in similar fashion.

65

Example For Γr
tt we get from (B.4),

Γr
tt = −1

2

∆

Σ

d

dr

[
−∆− a2 sin2 θ

Σ

]
. (B.7)

Using the quotient rule for differentiation and simplifying:

Γr
tt =

1

2

∆

Σ

[
d/dr(∆) · Σ− (∆− a2 sin2 θ) · d/dr(Σ)

Σ2

]
=

1

2

∆

Σ3

[
(2r − 2M) · Σ− (∆− a2 sin2 θ) · 2r

]
=

∆

Σ3

[
Mr2 −Q2r −Ma2 cos2 θ

]
. (B.8)

List of Christoffel Symbols The Christoffel symbols required by cuRRay
are the following:

Γr
tt =

∆

Σ3

[
Mr2 −Q2r −Ma2 cos2 θ

]
(B.9)

Γr
rr =

1

∆Σ

[
−Mr2 +Q2r + a2r + (M − r)a2 cos2 θ

]
(B.10)

Γr
θθ =− ∆

Σ
r (B.11)

Γr
ϕϕ =

∆

Σ3
sin2 θ

[
Σ
(
(r −M)a2 sin2 θ − 2r(r2 + a2)

)
+r
(
(r2 + a2)2 −∆a2 sin2 θ

)]
(B.12)

Γr
tϕ =

∆

Σ3
a · sin2 θ

[
−Mr2 +Q2r +Ma2 cos2 θ

]
(B.13)

Γr
rθ =− 1

Σ
a2 cos θ sin θ (B.14)

Γθ
tt =

1

Σ3
a2 sin θ cos θ

[
Q2 − 2Mr

]
(B.15)

Γθ
rr =

1

Σ∆
a2 sin θ cos θ (B.16)

Γθ
θθ =− 1

Σ
a2 sin θ cos θ (B.17)

Γθ
ϕϕ =

1

Σ3
sin θ cos θ

[
(r2 + a2)(∆a2 sin2 θ − (r2 + a2)2) + Σ∆a2 sin2 θ

]
(B.18)

Γθ
tϕ =

1

Σ3
a · sin θ cos θ(2Mr −Q2)(r2 + a2) (B.19)

Γθ
rθ =

1

Σ
r. (B.20)

These expressions were all calculated by hand and later checked using the
computer algebra system wxMaxima 1.

1. andrejv.github.io/wxmaxima/

Appendix C

Gravitational Redshift in
Kerr-Newman Spacetime

In this appendix, we derive equation (3.5.1) for the gravitational redshift in
Kerr-Newman spacetime. To this end, we calculate the ratio of frequencies
between sender and receiver. The sender is the light source, the receiver the
observer.

Angular Frequency The angular frequency of a photon as seen by an ob-
server with velocity vα is according to equation (3.2.1)

ω = −kαv
α. (C.1)

The wave vector kα is proportional to the velocity uα of the photon, as we
saw in chapter 3.2: kα = a · uα, where a is the factor of proportionality. We
get

ω = −a · gαβuαvβ. (C.2)

The units of ω depend on the parametrisation of uα and vβ.

Observer To prevent redshift due to the relativistic Doppler shift, the ob-
server and the source must not move relative to each other. This is the case
if both are stationary. For both, we thus set their velocities to v0 ̸= 0 and
va = 0. This however restricts redshift calculation to sources and observers
outside the ergosphere.

The frequency becomes

ω = −a ·
(
gttu

tvt + gtϕu
ϕvt
)
. (C.3)

We have
v · v = |v|2 = gαβv

αvβ = gttv
tvt, (C.4)

that is

vt =

√
|v|2
gtt

=
√
−|v|2 1

√−gtt
. (C.5)

66

67

In the last step we used the fact that |v|2 < 0 and gtt < 0 at all times (outside
the ergosphere).

Redshift The ratio of frequencies is

ωr

ωs
=

−a ·
√
−|v|2

(
ut

gtt√
−gtt

+ uϕ
gtϕ√
−gtt

)∣∣∣∣
r

−a ·
√

−|v|2
(
ut

gtt√
−gtt

+ uϕ
gtϕ√
−gtt

)∣∣∣∣
s

. (C.6)

This ratio only makes sense, if ωr and ωs are given in the same units, thus if uα
and vα are equally parametrised for both the sender and the receiver. Given a
parametrisation, |v|2 takes on a constant value for every object moving with
less than the speed of light (a result from special relativity that we will not
further discuss). |v|2 is thus the same for both observers. Also a is the same
for similar reasons. We arrive at the final equation:

ωr

ωs
=

ut
√−gtt − uϕ

gtϕ√
−gtt

∣∣∣∣
r

ut
√−gtt − uϕ

gtϕ√
−gtt

∣∣∣∣
s

. (C.7)

The nominator of the right hand side is evaluated at the observer, the denom-
inator at the light source. We get the values of uα along the light ray using
raytrcing, gtt and gtϕ can be calculated using equation 2.2.1.

Appendix D

Derivation of the
Cartesian-BL Transformation

Here we derive the transformation (6.4.1) that transforms vectors from local
Cartesian coordinates to global BL coordinates:

vαBL = Ψα
βv

β
C. (D.1)

Transformation of the Metric We know that our transformation acts on
tensors according to equation (1.5.1). It thus has to transform the metric of
the local inertial frame to the Kerr-Newman metric, evaluated at the observer
according to

ηαβ = Ψγ
αΨ

δ
β ĝγδ , (D.2)

where ĝγδ are the components of the Kerr-Newman metric at the observer and
ηαβ are the components of the Minkowski metric (flat spacetime in Cartesian
coordinates). Note, how the transformation is applied in the opposite direction:
This is due to the fact that the metric tensor transforms covariantely, while
vectors transform contravariantly.
Transformation Matrix To better understand our transformation, we think
of the components of both metric tensors as matrices. Our transformation then
becomes a transformation matrix. Because matrices are Rank-(1, 1) tensor, but
metric tensors have rank (2, 0), we have to be careful, when transforming the
equations (D.1) and (D.2) in matrix notation.

First, we define the matrices for the metric tensors. The row numbers
of such a matrix corresponds to the first index, the column numbers to the
second:

ηαβ =̂ η =
(β →

α
↓ . . .

)
. (D.3)

The components of the matrix are simply the components of the metric. The
same is true for the matrix ĝ, whose components are ĝαβ .

Equation (D.1) now becomes

v⃗BL = Ψ · v⃗C (D.4)

68

69

and equation (D.2) leads to

η = ΨT · ĝ ·Ψ. (D.5)

Ψ is the transformation matrix:

Ψ =̂ Ψα
β; (D.6)

The first index designates the row, the second the column.

Metric Matrices Let us have a look at the form of the metric matrices:

η =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , ĝ =


ĝtt 0 0 ĝtϕ
0 ĝrr 0 0
0 0 ĝθθ 0
ĝtϕ 0 0 ĝϕϕ

 . (D.7)

We see that ĝ can be diagonalized and scaled into η.

Diagonalising We know from linear algebra, that we can diagonalise a
square, invertible matrix A into a diagonal matrix (one, where all entries
except on the diagonal are zero):

D = P−1 ·A · P. (D.8)

The column vectors of P are the eigenvectors of A. The components of the
diagonal matrix D along the diagonal are the eigenvalues of A. For a symmetric
matrix A, we can always find an orthogonal matrix P , because the eigenvectors
of a symmetric matrix are orthogonal (see [BI78.1, S. 150]). If P is orthogonal,
we have

P−1 = P T . (D.9)

Since ĝ is invertible and symmetric, we have

D = P T · ĝ · P. (D.10)

P is the matrix of orthogonal eigenvectors of ĝ and D the diagonal matrix
containing the eigenvalues of ĝ along the diagonal. We are free to choose the
eigenvectors such that they are not just orthogonal, but also normalised to
length one. Without restriction, we can find an orthonormal (orthogonal and
normal) matrix P satisfying the previous equation.

We can find the eigenvalues of ĝ by solving the characteristic polynomial:

λ0 =
1

2

(
ĝtt + ĝϕϕ +

√
(ĝtt − ĝϕϕ)2 + 4ĝ2tϕ

)
λ1 = ĝrr

λ2 = ĝθθ

λ3 =
1

2

(
ĝtt + ĝϕϕ −

√
(ĝtt − ĝϕϕ)2 + 4ĝ2tϕ

)
. (D.11)

70

The eigenvectors are then

P =


1 0 0 ĝtϕ/(λ0 − ĝtt)
0 1 0 0
0 0 1 0

ĝtϕ/(λ3 − ĝϕϕ) 0 0 1

 . (D.12)

For convenience, we normalise the columns of P afterwards.
Scaling To get the flat metric, the diagonalised metric matrix needs to be
scaled:

η = S · (P T · ĝ · P), (D.13)

where S is the following scaling matrix:

S = diag(|λ0|−1, |λ1|−1, |λ2|−1, |λ3|−1). (D.14)

The eigenvalues are all positive real numbers, outside the ergosphere. Since
we only consider observers outside the ergosphere, this scaling matrix is well
defined.

We can easily split S into two diagonal matrices, since S is diagonal itself.
Also, the multiplication with diagonal matrices is commutative. We can thus
construct a coordinate transformation Ω:

η =
√
S
T
· (P T · ĝ · P) ·

√
S = ΩT · ĝ · Ω, (D.15)

where we used the notation
√
S =

√
S
T
= diag(|λ0|−1/2, |λ1|−1/2, . . .). (D.16)

Further Transformations Ω is not yet the transformation Ψ we are look-
ing for. We can extend Ω by further transformations that leave the metric
unchanged, but change vectors: We can add a rotation and a Lorentz trans-
formation.
Rotation We could further rotate the observer. Rotations leave the lengths
of vectors unchanged and thus do not change the metric. We need a rotation
to align the axes according to figure 6.4.2.

Investigating the action of Ω on Cartesian basis vectors, we see that no
additional rotation is required: The eigenvectors of ĝ we chose earlier turns
the action of P on spatial basis vectors into a simple scaling. This is exactly
what we want: x points along r, y along θ and z along ϕ.
Lorentz Transformation A Lorentz transformation (see chapter 1.1) allows
us to change the velocity of the observer relative to BL coordinates. We require
the observer to be stationary relative to these coordinates. The velocity vector
of the observer in BL coordinates is thus

V⃗BL =̂ V α
BL =

(√
1

|ĝtt|
, 0, 0, 0

)
. (D.17)

71

Here we chose the time component such, that ĝαβV
α

BLV
β

BL = −1. This corre-
sponds to a parametrisation using the observers proper time.

The squared length of a vector takes on the same value in every coordinate
system. We therefore have in Cartesian coordinates:

V⃗C =̂ V α
C = (1, 0, 0, 0) (D.18)

and ηαβV
α

C V β
C = −1.

Our coordinate transformation needs to fulfil

V⃗BL = Ψ · V⃗C (D.19)

Ω however does not fulfil this condition: By applying Ω to a purely timelike
vector, we get a vector with ϕ component other than zero. This happens
because of the dtdϕ cross term of the Kerr-Newman metric. Ω transforms the
local coordinates of an observer moving along ϕ with a certain velocity to BL
coordinates, not one who is stationary.

This motion can be corrected by a Lorentz transformation:

Ψ = Ω · Λ, (D.20)

Λ is the Lorentz transformation. We apply the Lorentz transformation in
Cartesian coordinates, before the rest of the transformation. We only need
to correct the velocity in ϕ direction. This corresponds to a correction in the
z direction of the local coordinates.
Inverse Lorentz Transformation It will be easier to work with the inverse
Lorentz transformation Λ−1. It has the following form

Λ−1 =


γ 0 0 −γv
0 1 0 0
0 0 1 0

−γv 0 0 γ

 . (D.21)

According to the equations (D.19) and (D.20), it fulfils the following condition:

Λ−1 · Ω−1 · V⃗BL = Λ−1 · X⃗ = V⃗C, (D.22)

where we have introduced the vector X⃗ = Ω−1 · V⃗BL. Considering equation
(1.1.3) and (D.21), we can now solve for v and calculate γ:

v =
X⃗z

X⃗t

(D.23)

γ =
X⃗t√

X⃗2
t − X⃗2

z

= X⃗t. (D.24)

Here we used X⃗2
t − X⃗2

z = 1, since ηαβX
αXβ = −1. Inserting into equation

(D.21) allows us to calculate Λ−1.

72

Complete Transformation The complete transformation is given by

Ψ = P ·
√
S · Λ. (D.25)

It fulfils the equations (D.4) and (D.2) and makes sure that the observer is
stationary and oriented correctly.

Appendix E

cuRRay: User Manual

E.1 Command Line
cuRRay is executed from the command line. The following options can be
supplied:

cuRRay [-s <scene file>] [-o <output directory>]
[-x <frame width>] [-y <frame height>] [-f <frame count>]
[-t <output type>] [-c <system configuration file>]
[-v <true/false>] [-q <true/false>] [-a <true/false>]
[-i] [-h] [--version] [--]

The command line for the CPU version, cuRRay_cpu, is very similar:

cuRRay_cpu [-s <scene file>] [-o <output directory>]
[-x <frame width>] [-y <frame height>] [-f <frame count>]
[-t <output type>] [-c <system configuration file>]
[-v <true/false>] [-q <true/false>] [-a <true/false>]
[-i] [-h] [--version] [--]

-s, --scene_file <scene file> Sets the scene file. Example: -s scene.yml.

-o, --output_dir <output directory> Sets the output directory. Example:
-o output.

-x, --x_res <frame width> Sets the frame width. Example: -x 1000.

-y, --y_res <frame height> Sets the frame height. Example: -y 1000.

-f, --frames <frame count> Sets the frame count. Default: 1. Example: -f
20.

-t, --output_type <output type> Sets the output type. Can contain any
of the following characters: i, c, r and d. Default: icr.

i: creates information text file (info.txt) containing a summary of the
scene and rendered frames.

c: creates PNG files with the calculated pixel colours (enumerated with

73

E.1. COMMAND LINE 74

frame number: c_0.png, etc.).
r: creates PNG files with redshift data (enumerated with frame number).
d: creates CSV file with detailed frame information (enumerated with frame

number).

-c, --config <system configuration file> Sets the system configuration
file. Default: config.yml.

-v, --verbose <true/false> Enables verbose logging. Overrides setting in
the system configuration file.

-q, --quiet <true/false> Mutes console output. Overrides setting in the
system configuration file.

-a, --auto_accept <true/false> By default, cuRRay asks the user whether
or not to proceed with the calculations after the scene file was loaded. Is
this option set, the user is not asked. If the console output is quiet, the user
is not asked no matter the value of this option. Overrides setting in system
configuration file.

-i, --info Shows information about installed NVIDIA GPUs. See listing E.1
for a possible output.

Listing E.1: Possible output of cuRRay -i
1 > cuRRay -i
2

3 --
4

5 ____ ____
6 _______ __ / __ \ / __ ____ ___ __
7 / ___/ / / / / /_/ / / /_/ / __ `/ / / /
8 / /__/ /_/ / / _, _/ / _, _/ /_/ / /_/ /
9 ___/__,_/ /_/ |_| /_/ |_|__,_/__, /

10 /____/
11 CUDA(R) Relativistic Raytracer
12 Version 2.0
13

14 ,
15 (c) 2018 Sebastien Garmier
16

17 --
18

19 CUDA GPU information:
20

21 Driver version: 9010
22 Required compute capability: 3.0
23

24 Device #0

E.2. SYSTEM CONFIGURATION FILE (SYSCONFIG) 75

25

26 Can be used: Yes
27

28 Name: GeForce GTX 760
29 Compute capability: 3.0
30 Clock rate: 1071500
31 Device copy overlap: enabled
32 Kernel execution timeout: disabled
33 Total global memory: 2147483648
34 Total const. memory: 65536
35 Max. memory pitch: 2147483647
36 Texure alignment: 512
37

38 Multiprocessor count: 6
39 Max. threads per multiprocessor: 2048
40 Shared memory per multiprocessor: 49152
41 Registers per multiprocessor: 65536
42 Threads per warp: 32
43 Max. threads per block: 1024
44 Max. block dimensions: (1024,1024,64)
45 Max. grid dimensions:

(2147483647,65535,65535)
46

47 --
48

49 No scene file specified , no raytracing will be
performed.

-h, --help Shows a list of all options and a short description.

--version Shows the version of the software (2.0 as of typesetting).

-- All further text after this option is ignored.

E.2 System Configuration File (Sysconfig)
The system configuration file (sysconfig) contains all settings concerning GPU,
CPU, output and raytracing algorithm. The default sysconfig file is config.yml.
To load another file, see appendix E.1. The sysconfig file is a YAML file (see
http://yaml.org). Note especially that YAML does not use tabs, but multi-
ple spaces for indentation.

E.2. SYSTEM CONFIGURATION FILE (SYSCONFIG) 76

GPUs One can enable the GPUs being used by the CUDA version using
settings in the sysconfig file. For instance:

gpus:
0:

enabled: false
1:

enabled: true

If a system only contains one GPU, the second entry (starting with 1:) can be
omitted. Likewise, one would add new entries if more GPUs are installed. The
numbers of the GPUs used in the sysconfig file are the same as outputted by
cuRRay -i.

CPU The amount of CPU threads used by the raytracer in the CPU version
can be set accordingly:

cpu:
threads: 8

Optimal performance is achieved, when this number is set to the number of
cores (or virtual cores) of the CPU.

Raytracer The constants ϵ (see chapter 6.8) and c (see chapter 6.6) can be
set accordingly:

raytracer:
horizon_epsilon: 0.5E-2
step_multiplier: 0.03125

Log The logging output is set accordingly:

log:
verbose: false
quiet: false
keep_log: false

verbose corresponds to -v.
quiet corresponds to -q.
keep_log cannot be set in the command line. It controls, whether a sep-

arate log file is created every time the software runs (keep_log: true), or
whether the same log file is overwritten every time. If the software crashes,
a separate log file with the crash report is created in any case. All log files
including error reports are stored in /log.

Automatic Execution The option auto_accept corresponds to -a. For
instance:

auto_accept: false

E.2. SYSTEM CONFIGURATION FILE (SYSCONFIG) 77

Example Listing E.1 shows the standard sysconfig file config.yml.

Listing E.1: Standard Sysconfig File config.yml
1 # Default config file
2

3 ---
4

5 # This configures the GPUs used by cuRRay.
6 # All GPUs that are not listed here are disabled
7 # by default.
8 # If your particular setup supports more than
9 # two GPUs, you may extend the gpus list by

10 # new entries.
11 # By default , only GPU #0 is enabled
12 gpus:
13 0:
14 enabled: true
15 1:
16 enabled: false
17

18 # This configures how the CPU is used in
19 # CPU-only mode (cuRRay_cpu)
20 # By default , 4 threads are used.
21 cpu:
22 threads: 4
23

24 # Raytracer configuration
25 raytracer:
26 horizon_epsilon: 0.5E-2
27 step_multiplier: 0.03125
28

29 # This configures the logging behaviour of cuRRay.
30 # By default , the output is non-verbose ,
31 # the log is mirrored to the console and the logfile
32 # is overriden every time the software runs.
33 log:
34 verbose: false
35 quiet: false
36 keep_log: false
37

38 # Tells cuRRay to automatically accept the scene
39 # configuration.
40 # If no cmd output is created , the configuration
41 # is always directly accepted.
42 auto_accept: false

E.3. RAYTRACING 78

E.3 Raytracing
To run the ratracer, at least the options -s, -o, -x and -y need to be set.
Additionally, one might set -f and -t.

Example To use the scene file scene.yml and the output directory output,
to create 20 frames with a resolution of 2000 by 2000 pixels each and to create
colour and redshift files, one uses the following command line:

cuRRay -s scene.yml -o output -x 2000 -y 1000 -f 20 -t cr

E.4 Scene File
The scene file is a YAML file describing the scene used to create frames.

Angles Angles can be specified in three different units: degrees, radians and
radians as multiples of π. The following four values are equivalent (90°):

90
90 deg
1.570796 rad
0.5 pi

The suffixes deg (degrees), rad (radians) and pi (radians as multiples of π) set
the unit in which the numerical value of the angle is interpreted. If no suffix
is specified, degree is chosen.

Colours RGB colours are specified as a list of the three colour components
(each ranging from 0 to 255). Yellow (R = 255, G = 255, B = 0) for instance,
would be written as

[255, 255, 0]

Animated Values Certain values can be animated over multiple frames.
Animated values follow this format:

[linear, <start value>, <end value>]

<start value> and <end value> are the values taken on in the first and last
frame respectively. For intermediate frames, the value is computed by linearly
interpolating between start and end value. To interpolate an angle from 0 to
2π, one would use the following code:

[linear, 0, 2 pi]

E.4. SCENE FILE 79

Metric Every scene file has to contain the three parameters M , a, Q of the
metric according the following example:

metric:
m: 1
a: 0.5
q: 0

All three values can be animated.

Observer The observer is configured like in the following example:

observer:
r: 30
theta: 0.5 pi
phi: 1 pi

roll: 0
pitch: 5 deg
yaw: 0

hfov: 70 deg
vfov: 70 deg

r, theta and phi are the BL coordinates of the observer. They are manda-
tory and can be animated.

roll, pitch and yaw are the roll, pitch and yaw angles of the observer.
They are optional and zero by default (then, the observer looks directly at the
black hole). They can be animated.

hfov and vfov are the field of view angles of the observer. hfov is manda-
tory, vfov is optional. If the vertical angle is omitted, cuRRay calculates it from
the horizontal angle and the frame dimensions, such that the aspect ratio of
the pixels is one:

tan(vfov/2)
tan(hfov/2)

=
h

b
, (E.4.1)

where h is the height and b the width of the frame.

Accretion Disc One can optionally configure an accretion disc which will
be centred around r = 0 and lie in the plane θ = π/2. For instance:

accretion:
color1: [0, 255, 0]
color2: [255, 0, 255]

resolution: [2, 12]

yaw: 0
radius: [5, 15]

E.4. SCENE FILE 80

color1 and color2 are the accent colours of the top and bottom side of
the disc respectively. Only color1 needs to be set. If the second colour is not
set, it is calculated from the colour components of the first colour according
to:

R2 = 255−R1,

G2 = 255−G1,

B2 = 255−G1. (E.4.2)

resolution is the resolution of the chessboard pattern. The first value
corresponds to the radial divisions and the second value corresponds to the
number of sectors. These values are required.

yaw is the angle by which the pattern is rotated around the polar axis.
This value is zero by default and can be animated.

radius are the two radii of the disc. The first value is the r coordinate of
the inner edge, the second is the r coordinate of the outer edge. These values
are required and can be animated.

Starry Sky Optionally, an image can be projected onto the sky sphere. For
instance:

skymap:
image: sky.png
boundary: 20

image is the image file containing the rectangular projection of the sky.
This is required.

boundary is the the r coordinate R, outside of which spacetime is ap-
proximated to be flat (see chapter 6.10). This value is required and can be
animated.

Spheres One can place up to eight spheres around the black hole. For every
sphere, a separate section is added in the scene file. For instance:

sphere:
color: [255, 255, 0]
resolution: [4, 8]

r: 10
theta: 90
phi: [linear, 0, 360]

roll: 0
pitch: 0
yaw: 0

radius: 3

E.5. TDR-TIMER UNDER WINDOWS 81

color is the required accent colour of the sphere.
resolution is the required resolution of the chessboard pattern. The first

value corresponds to the amount of lines of latitude and the second to the
amount of lines of longitude.

r, theta and phi are the BL coordinates of the sphere. They are required
and can be animated.

roll, pitch and yaw allow the precise orientation of the sphere. All angles
are optional and can be animated, their default value is zero. The sphere is
rotated along the axes of a local Cartesian coordinate system (like the one
used for the observer, same orientation of the axes relative to the BL axes)
first by roll around the negative x axis, then by pitch around the negative
z axis and finally by yaw around the negative y axis.

radius is the radius of the sphere in local Cartesian coordinates.

Colours One can also configure special colours in the scene file:

sky_color: [0, 0, 0]
horizon_color: [0, 0, 0]
error_color: [0, 0, 255]

sky_color is the colour of the sky. The default is black.
horizon_color is the colour of the event horizon. The default is red.
error_color is the colour of erroneous pixels. The default is blue.

Examples For examples of scene files, see the scene files of chapter 7.

E.5 TDR-Timer under Windows
Depending on the configuration, raytracing might take several minutes. Using
the CUDA version, the GPU is fully occupied during this time. If the display of
the computer is connected to that very same graphics card, the screen freezes
until cuRRay is done calculating.

To prevent this, Windows contains a built-in security, the TDR timer
(timeout detection and recovery timer), which kills programs that use the
graphics card for too long. This is of course not desired. Therefore, the TDR
timer should be disabled if one chooses to run the CUDA version.

The TDR timer can be disabled via the NVIDIA Nsight monitor (if in-
stalled) 1. Alternatively, one can disable it in the registry 2.

1. see http://docs.nvidia.com/gameworks/content/developertools/desktop/
nsight/timeout_detection_recovery.htm

2. see https://docs.microsoft.com/en-us/windows-hardware/drivers/
display/tdr-registry-keys

Appendix F

Git Repository

The Git repository at https://gitlab.com/sebiG/cuRRay hosts the cuRRay
source code, builds for Windows 10 and Linux, sample images created with
cuRRay and this document in German and English.

License cuRRay and everything pertaining to it is distributed under the MIT
license 1. A copy of the MIT license can be found on the repository in the end
user license agreement file (EULA.txt).

Git Versioning The highest version indicated by the tags on the repository
reflects the current cuRRay source code version. The master branch holds the
latest stable release. Changes in additional files like builds or PDFs are not
reflected by tags. The newest version of these files will be silently pushed to
the master branch. To get the newest version, simply download these files from
the master branch.

Further Information For further information (including animations created
by cuRRay), visit the cuRRay sub page on the authors web page:
sebastiengarmier.ch/cuRRay?lang=en.

1. See https://opensource.org/licenses/MIT

82

Appendix G

Compiling cuRRay

This appendix gives a quick overview of the compiling process under Win-
dows and Linux. Similar information can also be found in the readme file
(README.txt) on the repository.

G.1 General
cuRRay should only be compiled in 64-bit mode. It may be possible to compile
for 32-bit, but this was never tested.

For both Windows and Linux, libraries are required (see chapter 4.3). The
following libraries need to be installed and built for the compiler configuration
to be used with cuRRay:
Boost https://www.boost.org/

libPNG https://www.libpng.org/pub/png/libpng.html

zlib https://zlib.net/

yaml-cpp https://github.com/jbeder/yaml-cpp

G.2 Compiling under Windows (Visual Studio)

Visual Studio A version of Visual Studio 1 supporting the CUDA toolkit
8.0 and the platform toolset v120 needs to be installed. The CUDA toolkit 2

needs to be installed on top.
Environment Variables The following environment variables need to be
set:
INCLUDE : Contains include directories of all required libraries.
LIB : Contains library directories (debug and release) of the required libraries.
See the project options in the visual studio solution included in the source

1. See https://www.visualstudio.com/
2. See https://developer.nvidia.com/cuda-toolkit

83

G.3. COMPILING UNDER LINUX (G++-5) 84

code for further information on how the library files should be organised in
folders.

Compiling The solution included in the source code on the repository (see
appendix F) can simply be compiled in either debug or release mode. The
configuration needs to set to 64 bit.

The solution contains projects for the CUDA version (cuRRay_dev) and
the CPU version (cuRRay_dev_cpu).

Executing To execute cuRRay, the DLL files of all required libraries need to
be copied into the directory of the executable.

The CUDA DLL (cudart64_80.dll) is automatically copied by Visual
Studio (only required for CUDA version).

If the executable is run from outside Visual Studio, the C and C++ run-
times of the platform toolset v120 need to be copied as well (msvcr120.dll
and msvcp120.dll). These files are included in the Visual Studio installation.

Also, libpng16.dll needs to be copied. This file is obtained by compiling
libpng.

G.3 Compiling under Linux (g++-5)

GNU-make and g++ For compilation under linux, the repository contains
GNU makefiles for g++ (only release, no debug). The makefiles were success-
fully tested using g++ 5 under Debian 8. By adapting the makefiles, one could
possibly use other compilers. Before compiling, the CUDA toolkit needs to be
installed.

CUDA Version The makefile release.makefile compiles the CUDA ver-
sion.

CPU Version The makefile release_cpu.makefile compiles the CPU ver-
sion.

Execution If the required libraries were all installed using the package man-
ager, then the library files should be found automatically when executing
cuRRay. Otherwise, the environment variable LD_LIBRARY_PATH needs to be
set prior to execution.

List of Figures

1.2.1 Equivalence principle . 3
1.3.1 Visualization of curved spacetime 5
1.7.1 Parallel transport in flat and curved spacetime 9
1.8.1 Relative acceleration of geodesics 12

2.2.1 Kerr-Newman metric . 19
2.2.2 Extreme Kerr-Newman metric 20

3.4.1 Deflection of light rays by a Schwarzschild black hole 25

5.2.1 Processes and threads . 31
5.2.2 Blocks and threads . 33

6.4.1 Initial velocity vector of a light ray 37
6.4.2 Orientation of the local Cartesian coordinates 38
6.10.1 Rectangular projection of the night sky 43

7.1.1 Accretion disc of a Schwarzschild black hole, θ = 5° 48
7.1.2 Accretion disc of a Schwarzschild black hole, θ = 85° 48
7.1.3 Starry sky behind Schwarzschild black hole 49
7.1.4 Schwarzschild black hole with sphere around the horizon . . 49
7.1.5 Redshift around Schwarzschild black hole 49
7.1.6 Blueshift due to a Schwarzschild black hole 50
7.1.7 Looking out of a Schwarzschild black hole 50
7.1.8 Sphere in front of Schwarzschild black hole 51
7.1.9 Sphere next Schwarzschild to black hole 51
7.1.10 Sphere behind Schwarzschild black hole 51
7.2.1 Accretion disc of a Kerr black hole, θ = 5° 55
7.2.2 Accretion disc of a Kerr black hole, θ = 85° 55
7.3.1 Sphere behind Reissner-Nordström black hole 57

8.1.1 Errors along the Axis . 59

Front Page: Schwarzschild black hole with accretion disc

85

List of Listings

7.1.1 Accretion disc of a Schwarzschild black hole 52
7.1.2 Starry sky behind Schwarzschild black hole 52
7.1.3 Schwarzschild black hole with sphere around horizon 52
7.1.4 Redshift around Schwarzschild black hole 52
7.1.5 Blueshift around Schwarzschild black hole 53
7.1.6 Sphere close to a Schwarzschild black hole 53
7.2.1 Accretion disc of a Kerr black hole 56
7.3.1 Sphere behind Reissner-Nordström black hole 57

E.1 Possible output of cuRRay -i 74
E.1 Standard Sysconfig File config.yml 77

86

Bibliography

[AB16.1] Abbott, B. P. et al., 2016: Observation of Gravitational Waves from a
Binary Black Hole Merger, DOI: 10.1103/PhysRevLett.116.061102 (visited:
18.12.16).

[BI78.1] Bronshtein, I. N.; Semendyayev, K. A., 1978: Handbook of Mathemat-
ics: English Translation, edited by K. A. Hirsch, Frankfurt am Main: Verlag
Harri Deutsch.

[CC13.1] Chan, Chi-Kwan; Özel Feryal; Psaltis Dimitrios, 2013: GRay: A mas-
sively parallel GPU-based code for ray tracing in relativistic spacetimes,
arXiv:1303.5057v1 (visited: 17.09.16).

[CJ14.1] Cheng, John; Grossman, Max; McKercher, Ty, 2014: Professional
CUDA® C Programming, Indianapolis: Wiley.

[EA05.1] Einstein, Albert, 1905: Zur Elektrodynamik bewegter Körper, in: An-
nalen der Physik und Chemie, volume 322, 10, P. 891-921.

[EA16.1] Einstein, Albert, 1916: Die Grundlage der allgemeinen Relativitäts-
theorie, in: Annalen der Physik, volume 354, 7, P. 769 - 822.

[BS09.1] Brunier S.; European Southern Observatory (ESO), 2009: The Milky
Way panorama, https://www.eso.org/public/images/eso0932a/ (vis-
ited: 18.03.18).

[HS73.1] Hawking, Stephen W.; Ellis, George F. R., 1973: The large scale
structure of space-time, Cambridge: Cambridge University Press.

[KR63.1] Kerr, Roy P., 1963: Gravitational Field of a Spinning Mass as an Ex-
ample of Algebraically Special Metrics, in: Physical Review Letters, volume
11, P. 237 - 238.

[LD10.1] Louis, Dirk; Strasser, Shinja; Kansy, Thorsten, 2010: Microsoft Vi-
sual C#: Das Entwicklerbuch, Köln, O’Reilly.

[MC73.1] Misner, Charles W.; Thorne, Kip S.; Wheeler, John A., 1973: Grav-
itation, San Francisco: Freeman.

[NE65.1] Newman, Ezra T.; Couch, E.; Chinnapared, K.; Exton, A.; Prakash,

87

BIBLIOGRAPHY 88

A.; Torrence, R., 1965: Metric of a Rotating, Charged Mass, in: Journal of
Mathematical Physics, volume 6, P. 915 - 917.

[NG18.1] Nordström, Gunnar, 1918: On the Energy of the Gravitational Field
in Einstein’s Theory, in: Verhandl. Koninkl. Ned. Akad. Wetenschap., Afdel.
Natuurk., Amsterdam, volume 26, P. 1201 - 1208.

[PD11.1] Psaltis, Dimitrios; Johannsen, Tim, 2011: A ray-tracing algorithm
for spinning compact object spacetimes with arbitrary quadrupole moments.
I. Quasi-kerr black holes, in: The astrophysical journal, 745:1, 20. Januar
2012, doi:10.1088/0004-637X/745/1/1 (visited: 17.09.16).

[RH16.1] Reissner, Hans, 1916: Über die Eigengravitation des elektrischen
Feldes nach der Einsteinschen Theorie, in: Annalen der Physik, volume
355, 9, P. 106 - 120.

[SJ11.1] Sanders, Jason; Kandrot, Edward, 2011: CUDA by Example: An In-
troduction to General-Purpose GPU Programming, Boston: Addison-Wesley.

[SK16.1] Schwarzschild, Karl, 1916: Über das Gravitationsfeld eines Massen-
punktes nach der Einsteinschen Theorie, in: Sitzungsberichte der Königlich-
Preussischen Akademie der Wissenschaften, Sitzung vom 3. Februar 1916,
P. 189 - 196, Berlin: Deutsche Akademie der Wissenschaften.

[SK16.2] Schwarzschild, Karl, 1916: Über das Gravitationsfeld einer Kugel aus
inkompressibler Flüssigkeit nach der Einsteinschen Theorie, in: Sitzungs-
berichte der Königlich-Preussischen Akademie der Wissenschaften, 1916,
P. 424 - 434, Berlin: Deutsche Akademie der Wissenschaften.

[SP99.1] Schneider, Peter; Ehlers, Jürgen; Falco, Emilio E., 1999: Gravita-
tional Lenses, Study Edition, 2nd printing, New York: Springer.

[TE91.1] Taylor, Edwin F.; Wheeler, John A., 1991: Spacetime Physics: In-
troduction to Special Relativity, 2nd Edition, New York: Freeman.

[VM08.1] Visser, Matt, 2008: The Kerr spacetime: A brief introduction,
arXiv:0706.0622v3 (visisted: 06.01.17).

[WR84.1] Wald, Robert Manuel, 1984: General Relativity, Chicago: The Uni-
versity of Chicago Press.

