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Abstract

Starting from the point of view of an observer, we provide a new construction for unitary
quantum reference frame transformations between observer perspectives, and under physical
assumptions derive the existence of an observer-independent, external view. The non-trivial
problem of reversibly transforming between physically relevant imperfect reference frames is
solved by embedding such frames in perfect ones. Thanks to this embedding, our approach
allows transforming into the perspective of an imperfect quantum reference frame, in a
way which is consistent with the rich information theory of such frames. We explore the
consequences of the embedding and explain the point of view of an observer whose frame is
imperfect. The findings are applied to imperfect reference frames for one-dimensional Galilei
transformations, in light of potential future applications in quantum gravity.
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1. Introduction

Any description of physics will inevitably require the notion of an observer, since we ourselves
are observers. Closely linked to observers is the notion of a reference frame, intuitively the
point of view an observer has on nature. Physical quantities are then understood relative to
this reference frame. In classical physics, reference frames are often imagined as in principle
realizable using physical objects [1, 2]; for instance, one may imagine how a Cartesian
coordinate system, a reference frame for motion in space, could be constructed from a rigid
body. It thus seems inevitable to also consider reference frames realizable from quantum
objects, if one is studying quantum phenomena [3–5]. This idea is the main motivation
behind the field of quantum reference frames and quantum reference frame transformations,
which has recently received a lot of attention [6–15, and sources therein]. Compared to
reference frames in classical physics, quantum reference frames can be in superpositions of
orientations, and exhibit other quantum phenomena such as entanglement.
Quantum reference frames can be further divided into perfect and imperfect frames, based
on how well they break the symmetry of the symmetry group relevant in the studied scenario.
Intuitively, a reference frame breaks the symmetry perfectly, if it can perfectly keep track of
every symmetry transformation which acts on the studied quantum system. For instance,
the position of a classical particle is a perfect reference frame for translations, if position
can be measured to arbitrary precision. Due to uncertainty relations, quantum objects
occurring in nature typically make imperfect reference frames. For instance, one cannot
perfectly localize a quantum particle without letting its momentum uncertainty and thus
also energy uncertainty become unbounded; thus it makes an imperfect reference frame for
translations. The difference between perfect and imperfect quantum reference frames is
illustrated in figure 1.1.
Without the notion of transforming between frames, quantum frames are still immensely
useful as references, relative to which quantum information, such as the orientation of a
spin, can be understood; this idea has lead to the development of a rich information theory
of imperfect reference frames [6, 16–24, and sources therein].

x x

Figure 1.1: Left: An unrealistic, perfectly localizable quantum particle as a perfect
reference frame for translations in one dimension. It may be in superposition, as
indicated, or exhibit other quantum phenomena. Right: A more realistic quantum
particle, which cannot be perfectly localized, as a reference frame for translations
in one dimension. This particle too may be in superposition.

Importantly, quantum reference frames are also expected to play a role in the development
of quantum gravity [10, 13–15, 25–27]. For instance, one may hope to better understand
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the gravitational field of a gravitating mass in superposition by transforming into the frame
of the mass, where the gravitational field could be argued to become classical. And since
quantum masses cannot be perfectly localized, we have reason to believe that especially
imperfect reference frames will be relevant.
We are thus interested in transformations between imperfect quantum reference frames.
Such transformations have however been studied less extensively than transformations be-
tween perfect frames (see e.g. [8, 15] for the latter). This stems in part from the difficulty
if not impossibility of reconstructing the view of one observer from the view of another:
an imperfect observer, say Alice, might not have access to all the information necessary to
reconstruct the view of another observer, say Bob, leading to irreversible transformations
(see e.g. [6]). We here take the standpoint that the views of both observers exist, and thus
there must be a way of reversibly, i.e. unitarily transforming between them, even if this
requires keeping track of information which might not be accessible to certain observers.
We do not ask: “what does Alice think that Bob sees?” But rather: “what does Alice see
and what does Bob see?” There already exists a framework capable of unitary transforma-
tions between imperfect reference frames, the so-called perspective-neutral approach [9–14].
Unfortunately, it relies on coherent methods (inspired by the Page-Wootters formalism for
time evolution [28, 29]) and because of this is incompatible with the rich information theory
of imperfect reference frames mentioned above. In short, the perspective-neutral approach
uses a coherent group average (so-called coherent G-twirl) to handle the lack of knowledge of
certain degrees of freedom in absence of a reference, while the mentioned information theory
relies on an information-theoretically more natural incoherent average (the G-twirl) for the
same purpose. The framework [15] uses the incoherent approach, and is thus compatible
with the information theory of imperfect frames, but it cannot handle imperfect reference
frames.
The goal of this thesis is to extend the formalism [15] to allow for transformations between
imperfect reference frames, in light of potential applications in quantum gravity. The result
is to our knowledge the first framework of quantum reference frame transformations which
(1) produces unitary transformations between reference frames, (2) can deal with imperfect
frames, and (3) is compatible with the information theory of imperfect frames. A detailed
outline of how this is done as well as a list of results and contributions of the thesis is
provided in the next section.

1.1 Outline

We begin by introducing perfect and imperfect reference frames in chapter 2, with emphasis
on quantum reference frames. These notions have been firmly established in the literature;
most of the chapter will thus be an introduction to already existing concepts. We will see
that the defining feature of a reference frame is its ability to break the symmetry of a group
G; whether this works perfectly distinguishes perfect from imperfect reference frames.
In chapter 3 we introduce the formalism [15] of reversible transformations between perfect
reference frames. We do this in a novel way, by beginning with the point of view of an
observer, and constructing the transformations from there. Among other things, we will
derive the existence of an observer-independent external view, which (in a sense explained
later) was the starting point for the original derivation of the formalism. Also, we will not
consider the algebras of observables accessible by different observers studied in [15], but
rather consider states which transform from one observer to another.
In chapter 4 we then extend the formalism described in chapter 3 to allow for reversible
transformations between imperfect quantum reference frames. This is done through intro-
ducing embeddings of imperfect quantum reference frames into perfect ones. We observe
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that embedding of imperfect reference frame states into perfect ones is necessary to yield
reversible transformations, but that this does not conflict with observers only having access
to the imperfect states. We also describe the physical implications of such embeddings and
explain what an observer in an imperfect quantum reference frame sees; notably, such an
observer tends to have a “fuzzy view” of physics due to the imperfection of their frame.
Chapter 5 introduces the Galilei transformations in one dimension, those being among the
symmetry groups which are interesting for quantum gravitational applications. Both the
Galilei group and its central extension, as well as their mass-m representations, describing
the action on quantum particles, are discussed. The central extension is relevant because it
makes the mass-m representations non-projective and thus suitable for our formalism, and
we will see that it is the natural group to consider when describing particles of potentially
variable mass. We also discuss the representation theory of the centrally extended Galilei
group.
Finally, we apply our new formalism to imperfect Galilei reference frames of quantum parti-
cles in chapter 6. We find that a single quantum particle always yields an imperfect quantum
reference frame and argue that quantum particles in squeezed coherent states are an ideal
choice for such reference frames. We close by describing the view of an observer in such a
frame and illustrate the “fuzzy view” found earlier.
There are two main novel contributions in this thesis: Firstly, we provide a new, “observer-
first” approach to the formalism of reversible transformations between perfect quantum
reference frames of [15]. This new approach is less abstract than the original (the abstract
approach has its own benefits however), and since it begins with the familiar view of an
observer, it can serve as a pedagogical introduction to quantum reference frame transforma-
tions. Secondly, and perhaps more importantly, we provide a new way of handling reversible
transformations between imperfect frames, which is compatible with the rich information
theory of imperfect frames, since it does not rely on coherent techniques. This approach is
enabled through the embedding of imperfect frames into perfect ones.

1.2 Notations and Conventions

We work in natural units where ℏ = 1.
A dot “ · ” instead of a function argument, i.e. “( · )”, “[ · ]”, “( · , · )”, etc. stands for an
unspecified function argument.
Hilbert spaces [30] are denoted by calligraphic letters, typically by H, H1, HA, etc. The
inner product is ( · , · ).
States ψ ∈ H in a Hilbert space are usually written in the bra-ket notation [30]: ψ = |ψ⟩,
⟨ψ|ϕ⟩ = (ψ, ϕ), and ⟨ψ| = (ψ, · ).
Given a Hilbert space H, H denotes the larger vector space obtained in the context of rigged
Hilbert spaces [30, 31]. H is not a Hilbert space, but certain improper states in H\H are
compatible with the scalar product of H (generally having infinite normalizations), and we
use braket-notation for those states as well.
Operators on Hilbert spaces, as well as their extensions to larger vector spaces in the context
of rigged Hilbert spaces, are denoted with a caret: Â, ρ̂, Û , etc.
G denotes a connected, non-trivial Lie group [32, 33]. Our Lie groups are finite-dimensional.
Except for section 2.3, G will always be unimodular [34] (the left and right Haar measures
coincide). We will always work with a fixed yet arbitrary (left and right) Haar measure.
|G| is the total volume of the group and can be infinite (if and only if G is non-compact,
see theorem B.4). |G| should not be confused with the number of elements in G, which we
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denote by #G, and which is always uncountably infinite.
Except for section 2.2, all representations of G will be unitary and non-projective [32]. The
mass-m representations Ûm(a, v) of the Galilei group Gal in chapter 5 are projective. We
will usually not specify that representations are non-projective, but always if they are.
When talking of squeezed coherent states of a quantum particle, we also mean the special
case of coherent states (i.e. with no squeezing).

6



2. Perfect and Imperfect Reference
Frames

Here we introduce the notion of a reference frame for a group G. Section 2.1 begins by
describing so-called perfect reference frames, which intuitively can be used to perfectly break
the symmetry of G by perfectly keeping track of G-transformations. Section 2.2 then special-
izes to perfect quantum reference frames, and section 2.3 provides an explicit construction of
such quantum frames. Besides perfect reference frames, we will also be strongly interested in
imperfect reference frames, which are introduced in section 2.4. Finally, section 2.5 discusses
ways of comparing different imperfect frames with each other thanks to so-called badness
measures.

2.1 Perfect Reference Frames

Intuitively, a reference frame is a physcial system used to keep track of transformations
acting on a larger physical system containing the frame. The notion of transformations is
most readily provided by a group (see e.g. [32] for the definition of a group). We will be
interested in continuous transformations and thus consider any connected Lie group G. A
Lie group is a group which is also a smooth manifold such that the group operation as well
as the group inverse are smooth (see e.g. [32, 33] for detailed definitions). In the chapters
5 and 6 we will specialize to Galilei transformations in one dimension and thus consider
variants of the one-dimensional Galilei group. For now, we will however keep our discussion
general.
A reference frame should keep track of transformations in the sense that from two given
reference frame states it should be possible to experimentally determine the unique trans-
formation g ∈ G which maps the first into the second. Or rather, that should at least be
possible for a subset of all reference frame states. We also say, that a reference frame for
G is a physical system which perfectly breaks the symmetry of G. This symmetry-breaking
requirement is often taken, either explicitly or implicitly, as a basis for defining (quantum-)
reference frames [10, 13–15, 19, 20].
Besides being a tool to break the symmetry of a group, reference frames in physics impor-
tantly also serve as a point of view which can be taken: it should be possible to link reference
frames to observers. We will discuss this aspect of reference frames later, in chapter 3, and
only for the case of quantum reference frames relevant for us.
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Basic Notions. To make the idea of a reference frame precise, we begin by considering a
representation of G acting on the space Σ of some physical system. Recall [32]1:

Definition 2.1: Representation

Consider a set X on which G acts through a continuous group action

U : G → {X → X}, (2.1)

i.e., U maps group elements to transformations on X. The action U is called a
representation of the Lie group G, if it preserves the group multiplication:

U(g′) ◦ U(g) = U(g′g) ∀g, g′ ∈ G. (2.2)

We now assume the existence of special states in Σ, the classical reference frame states, such
that they implement the symmetry-breaking requirement. More precisely:

Definition 2.2: Perfect Reference Frame

Consider the state space Σ of a physical system, acted upon by a representation U
of G. If there exists a subset of states C ⊂ Σ with the properties

(a) the states C are physically distinguishable (see clarifications below),

(b) C is an orbit of G under U (i.e. G acts transitively on C),

(c) for any σ, σ′ ∈ C there exists precisely one g ∈ G such that σ′ = U(g)(σ) (i.e.
G acts freely on C),

then we say that the physical system is a perfect reference frame for G with the
classical reference frame states C.

With “physically distinguishable” we mean that one can perform an experiment to determine
which of the states in C the system is in, provided we know that it is in one of those states.
The exact meaning depends on the physical system in question as well as the context in
which it is considered, since both influences the set of available measurements. For quantum
reference frames for instance, physically distinguishable states will be implemented by or-
thogonal quantum states, i.e. states which can be distinguished by a quantum measurement.
We will see further down why calling C the “classical reference frame states” makes sense.

Example 2.3

Consider the group G := (R,+) of translations in one dimension, and let Σ := R be
the space of admissible positions of a particle in one dimension. Let U(a)(b) := a+b,
i.e. we let translations act on the particle exactly as one would imagine. Then setting
C := Σ defines a perfect reference frame provided different positions of the particle
can be distinguished with arbitrary precision.

1What we call “representation” of a group here is called a “realization” of a group in [32]. The concept
of “representation” of [32] corresponds to our concept of linear representation, which will be introduced in
definition 2.7 as a special case of a representation.
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When explicitly constructing perfect reference frames later on, the following will be useful:

Proposition 2.4: Labelling of Classical Reference Frame States

Given a perfect reference frame Σ for G with classical reference frame states C, it is
possible to label states in C as C = {cg : g ∈ G}, such that

U(g′)(cg) = cg′g ∀g, g′ ∈ G. (2.3)

Labellings of this type are unique up to exchanging of the labels through g ⇝ g′g,
where g′ ∈ G is arbitrary. Equivalently, one may choose any c ∈ C to be labelled by
the identity e.

Notice in particular that the relabelling freedom means that there is nothing special about
ce, nor any other cg. This is in line with the symmetry-breaking property, which only
requires a perfect reference frame to determine the transformations which are acting, but
not the initial and final states.

Proof of Proposition 2.4. From transitivity and freeness of U it follows that there is a bijec-
tion from G to C. Choosing ce ∈ C and imposing (2.3) then fixes the labelling of every other
element. Using the representation property of U one shows that (2.3) can indeed be met for
every choice of ce, and that different choices correspond to relabelling g ⇝ g′g, where cg′ is
the element to be newly labelled by the identity, expressed in the old labelling system.

Perfect Minimal Reference Frames. Note that definition 2.2 left open the possibility
that Σ contained other states than the classical reference frame states C. Importantly, we
have no guarantee that states outside C are any useful for breaking the symmetry of G and
thus for the operation of Σ as a reference frame.
These extra states are typically not expected of reference frames as they are traditionally
used in classical physics (see e.g. the reference frames used in special and general relativity
[1, 2]). This explains why we call C the set of classical states. We introduce the following
terminology:

Definition 2.5: Minimal Reference Frame

A perfect reference frame is called minimal, if Σ = C.

Example 2.6

Example 2.3 of a perfect reference frame is a minimal reference frame.

If we extend the example by setting Σ := R×R to be the phase space of the particle,
i.e. with one factor of R describing position of the particle and the other its momen-
tum, and letting G only act on the position (as one would expect), then any orbit
of G in Σ can define the classical reference frame states of a perfect reference frame
(assuming again perfect distinguishability). This frame will however not be minimal.

For quantum reference frames discussed below we will typically have C ⊊ Σ, roughly speak-
ing because quantum physics allows us to take superpositions of the classical states, which
lie outside C. However, a quantum reference frame will not be the opposite of a minimal
reference frame, and there exist quantum reference frames which qualify as minimal under
definition 2.5. We will come back to such an example below, after having defined quantum
reference frames.
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2.2 Perfect Quantum Reference Frames

Recall that in pure state quantum physics [30], the state of a system is a vector |ψ⟩ ∈ H of
a Hilbert space H up to complex multiple.2 Explicitly, the state space is:

Σ(H) := (H\{0})/∼, |ψ⟩ ∼ |φ⟩ ⇔ ∃ 0 ̸= λ ∈ C : |ψ⟩ = λ |φ⟩ .

Note that the zero vector is typically not considered a valid state of the system. For 0 ̸= |ψ⟩ ∈
H we denote by [|ψ⟩] ∈ Σ(H) the quantum state represented by |ψ⟩. Because H is a Hilbert
space, given a state σ ∈ Σ(H) it is always possible to find a unit-norm representative |ψ⟩,
i.e. ⟨ψ|ψ⟩ = 1 and [|ψ⟩] = σ. As usual, two states σ, σ′ ∈ Σ(H) are perfectly distinguishable
if any (and every) pair of representatives |ψ⟩, |ψ′⟩ are orthogonal:

| ⟨ψ|ψ′⟩ |2 = 0, such that [|ψ⟩] = σ, [|ψ′⟩] = σ′. (2.4)

Probabilities are absolute squares of scalar products between unit-norm representatives of
states.
Note that for a set C of states which are pairwise orthogonal one can find an observable
whose possible outcomes upon measurement contains C as a subset: we simply take the one-
dimensional subspaces of the states in C as the eigenspaces of this observable. Measuring
that observable allows us to perfectly distinguish between the states in C, provided our
system is known to be in one of those states; this justifies why we should call C a set of
“perfectly distinguishable” states.
With a state space identified and meaning attributed to “perfectly distinguishable” through
orthogonality of states (2.4), we could now follow definition 2.2 and define perfect quantum
reference frames by setting Σ equal to Σ(H). However, there are three reasons why such a
definition would be inadequate; let us address them now.

1. Quantum Symmetries. To exclude pathological examples, we will assume that U(g)
is a symmetry of quantum physics ∀ g ∈ G, i.e. that it leaves probabilities invariant. That
is, if σ1, σ2 ∈ Σ(H) are two states with representatives |ψ1⟩, |ψ2⟩, σ′

1 := U(g)(σ1), σ2 :=
U(g)(σ2) are their transformed counterparts with representatives |ψ′

1⟩, |ψ′
2⟩, then

| ⟨ψ′
1|ψ′

2⟩ |2
⟨ψ′

1|ψ′
1⟩ ⟨ψ′

2|ψ′
2⟩ = | ⟨ψ1|ψ2⟩ |2

⟨ψ1|ψ1⟩ ⟨ψ2|ψ2⟩ . (2.5)

Wigner’s theorem [30, 35] then guarantees that for every g ∈ G there exists a unitary
operator Û(g) : H → H such that for all g ∈ G and all σ ∈ Σ(H) we have

U(g)(σ) = [Û(g) |ψ⟩], ∀ |ψ⟩ ∈ H : [|ψ⟩] = σ, (2.6)

and g 7→ Û(g) is continuous.3 U(g) can thus be seen as arising from the unitary map
|ψ⟩ 7→ Û(g) |ψ⟩ acting on H, but the theorem fixes Û(g) only up to a g-dependent phase.
The representation property (2.2) combined with (2.6) translates to

[Û(g′)Û(g) |ψ⟩] = [Û(g′g) |ψ⟩], ∀ g, g′ ∈ G, ∀ |ψ⟩ ∈ H, (2.7)

which in turn means that Û(g) is generally a projective representation of G on H.
2At this point, we can equivalently identify the states of the system with the orthogonal projectors Π(H)

onto one-dimensional subspaces of H. We will however shortly have to deal with non-normalizable states,
where orthogonal projectors are ill-defined; we thus stick to the definition provided here.

3According to Wigner’s theorem, Û(g) could also be an anti-unitary operator. This can however be ruled
out in the case of a connected Lie group, which we are considering.
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Let us recall the definitions of representations on vector spaces [32, 35]:

Definition 2.7: Linear, Projective and Unitary Representations

Let V be a complex vector space.

(a) A representation Û : G → GL(V ) is called a linear representation of G.

(b) A representation Û : G → U(V ) is called a unitary representation of G. In
order to distinguish it from case (c) below, we sometimes specify that Û is
non-projective.

(c) If the action Û : G → U(V ) is not a representation but satisfies

Û(g′)Û(g) = eiω(g′,g)Û(g′g), ∀ g, g′ ∈ G, (2.8)

where ω : G × G → R is a continuous function, we say that Û is a projective
representation of G.

Without specification, a “unitary” representation is always taken to be non-
projective, i.e. of type (b). We will always explicitly state if we consider a projective
representation.

Note that linear and unitary representations are representations in the sense of definition
2.1, but projective representations are not. Also, one can show that ω satisfies a so-called
2-cocycle equation [36]

ω(g, g′) + ω(gg′, g′′) = ω(g′, g′′) + ω(g, g′g′′), ∀ g, g′, g′′ ∈ G, (2.9)
and

ω(g, e) = ω(e, g), ∀ g ∈ G. (2.10)

2. Improper States. Since G is a Lie group, it is uncountable, implying that C must be
uncountable too. We thus have the task of finding an uncountable set of mutually orthogonal
states in H. This is a problem, since Hilbert spaces can have at most countable bases of
mutually orthogonal states. We can however obtain a perfect reference frame if we also allow
improper states, as illustrated by the following example:

Example 2.8

Consider a quantum particle in one dimension, described by H := L2(R), and take
again G := (R,+) to be the translation group in one dimension. Take the standard
translation of the wave function ψ ∈ L2(R) as a representation:

(Û(a)(ψ))(x) := ψ(x− a). (2.11)

This is the quantized version of the classical system considered in example 2.3.
As such, it would seem intuitive that one can use the quantum particle to define a
perfect quantum reference frame for (R,+). This suspicion is further strengthened by
the rule of thumb that classical observables (in our case position x) become operators
(x̂ here), with the possible measurement outcomes precisely the classically allowed
values of the observable (R for us). Thus: by taking the projectors constructed from
the position eigenstates |y⟩, y ∈ R and x̂ |y⟩ = y |y⟩, we should be able to construct
a set C of classical reference frame states.
This fails because the position eigenstates are improper states not contained in H, but
rather in a larger, non-Hilbert vector space of distributions. If the L2-norm ∥·∥ of H is
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extended to that space, the norms of position eigenstates are infinite. In this case, the
larger space is the space S×(R) of tempered distributions. This space includes Dirac-δ
distributions (which are the position eigenstates), but also other non-normalizable
states such as the plane waves representing momentum eigenstates.

Issues such as this can be resolved by switching from the Hilbert space formalism to so-called
Rigged Hilbert spaces [30, 31]. Roughly speaking, one generally proceeds as in the example
above: we identify a larger vector space containing our Hilbert space and additional, new
states of interest; the scalar product is then partially extended to this larger space. The
larger space will typically fail to be Hilbert space, often containing pairs of states with
infinite scalar products. The extended scalar product will however be enough to give a
useful meaning to Hermitian transposition, unitarity, etc. on the larger space [37]. Also,
given a linear map between Hilbert spaces it is under quite general assumptions possible to
extend it uniquely and continuously to a linear map between the corresponding larger spaces
[37]; this in particular allows extensions of representations [38]. One can then effectively work
with the larger space instead of the Hilbert space.
We will not need the details of the rigged Hilbert space formalism and refer to the literature.
We will deal with the problem slightly informally (as is often done) by treating the extended
space as if it were a Hilbert space, knowing that the details can be worked out in the context
of rigged Hilbert spaces. For simplicity, we will not adopt the standard notation of rigged
Hilbert spaces4 and write H̄ for the larger space given a Hilbert space H. Note that the
precise meaning of the larger space depends on the situation, but again we will not need the
details.
To use H̄ in quantum reference frames, we must construct Σ from H̄:

Σ := Σ(H̄), (2.12)

On Σ(H) ⊂ Σ(H̄) it is possible to find representatives with unit norm, but in H̄ this is
generally not possible. Because of this, the notion of quantum symmetry described above,
which relies on preservation of probabilities in turn relying on normalized states, must be
adjusted: we will instead assume that the representation U on Σ stems from a projective
representation Û on H as in Wigner’s theorem, extended to H̄. Restricted to Σ(H), this
then implies conservation of probabilities.

3. Projective Representations and Central Extensions. It is mathematically pos-
sible to see a projective representation of G as a unitary, non-projective representation of a
larger group CG, a central extension of G [36]. This is why one can for instance study spin
using unitary representations of SU(2) instead of projective representations of SO(3). Fur-
thermore, in the case of the Galilei group, it can even be argued that the physically relevant
group is the central extension [39]. Thus, we will from now on focus only on unitary, non-
projective representations, and we will not mention that a representation is non-projective.

4Roughly speaking, if H is a Hilbert space and Φ ⊂ H is a suitable subspace of “test functions”, and
Φ× is the corresponding “distribution space” (technically, complex-conjugated distribution space), then the
triple Φ ⊂ H ⊂ Φ× defines a rigged Hilbert space. The “larger space” is Φ×. See [30] for an introduction to
Rigged Hilbert spaces and [31] for a detailed treatment.
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Definition of Perfect Quantum Reference Frames. With all three of these points
cleared, we can finally proceed with defining perfect quantum reference frames:

Definition 2.9: Perfect Quantum Reference Frame

Consider a quantum system described by a rigged Hilbert space H ⊂ H̄ with state
space Σ = Σ(H̄). Let Û be a unitary representation of G on H̄,5 giving rise to a
representation U on Σ.

If there exists a subset C ⊂ Σ satisfying the three requirements of definition 2.2, in
particular with perfect distinguishability defined via orthogonality (2.4), then we call
the system a perfect quantum reference frame for G with classical reference frame
states C.

As mentioned before, a quantum reference frame is usually not minimal, since it is often
possible to find superopositions of states in C, which are themselves not in C.
On the level of Hilbert spaces we note the following useful characterization of distinguisha-
bility of the classical states:

Proposition 2.10

For a perfect quantum reference frame it holds that for every e ̸= g ∈ G and all c ∈ C

⟨Γ| Û(g) |Γ⟩ = 0, ∀ |Γ⟩ ∈ H̄ : [|Γ⟩] = c. (2.13)

Proof. Since G acts freely on C, for e ̸= g ∈ G, c ∈ C and any representative |Γ⟩ of c it
holds that U(g)(c) = [Û(g) |Γ⟩] ̸= c. Thus, U(g)(c) must be perfectly distinguishable from
c, which according to (2.4) means that ⟨Γ| Û(g) |Γ⟩ = 0.

Also, we introduce representatives of C:

Definition 2.11

For a perfect quantum reference frame with classical states C, for every |Γ⟩ ∈ H̄
representing a state c ∈ C, we introduce the set

C|Γ⟩ :=
{
Û(g) |Γ⟩ : g ∈ G

}
⊂ H̄. (2.14)

It holds that [C|Γ⟩] = C, making C|Γ⟩ a set of representatives of the classical states. This
set is minimal and also an orbit of Û . We will often work with some C|Γ⟩ instead of C. The
different C|Γ⟩ differ by a multiplicative constant stemming from normalization.
Finally, we note that one can more generally allow mixed reference frame states as opposed
to pure ones described so far. We will do this, but keep the classical reference frame states
pure for simplicity. The switch to mixed states works rigorously when restricting to H by
considering density operators on H; see e.g. [30] for a treatment of mixed state quantum
physics. However, we will also have to deal with mixtures of non-normalizable states. For
those we do not seek a rigorous treatment but instead content ourselves with formal expres-
sions and keep track of infinities. For instance, we will extend the trace to non-normalizable
orthogonal bases in some places; we will come back to this once required.
Note that what we call a “perfect quantum reference frame” here corresponds to an “ideal
reference frame” (a special type of “complete reference frame”) in [13].

5More precisely, we consider Û to be unitary on H, with extension to H̄.
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2.3 Perfect Quantum Reference Frames from Regular
Representations

We saw in example 2.8 how the square-integrable functions L2(R) with representation (2.11),
augmented by δ-distributions, could be used as a perfect quantum reference frame for (R,+).
Note that we can understand (2.11) as a ∈ R acting on the argument x of a function ψ by
addition (the group multiplication in (R,+)) of −a (the group inverse of a in (R,+)). A
similar construction will allow us to define a perfect quantum reference frame for any Lie
group G using the square-integrable functions on G, see e.g. [13]. Let us make this precise.
To define integration on G, one needs a measure on G. Measures are conveniently provided
by the left and right Haar measures [34] which exist for every Lie group G. These measures
have the property of being left- and right-invariant respectively under the action of group
multiplication in G, similarly to how the Lebesgue measure used to define L2(R) is invariant
under translations, i.e. under group multiplication in (R,+); in fact, the Lebesgue measure
is a left and right Haar measure of (R,+). Both left and right Haar measures are unique
up to a positive multiplicative constant. If left and right Haar measures coincide, we call G
unimodular [34]. The basics of Haar measures are treated in appendix B.1.
While not all Lie groups are unimodular, most Lie groups used in physics are. The following
are some of the most often-encountered unimodular Lie groups in physics [34, 40]:

(a) All compact Lie groups are unimodular. This includes the orthogonal or unitary groups
O(n) and U(n), as well as their special variants SO(n) and SU(n).

(b) All Abelian Lie groups are unimodular. This includes the translation groups in Rn, of
which the Galilei group in one dimension is a special case.

(c) The general and special linear groups GL(n) and SL(n) are unimodular.
(d) The strictly upper triangular matrices with unit diagonal in GL(n) are unimodular. In

particular, the Heisenberg group is unimodular.
(e) The Lorentz and symplectic groups are unimodular.

As for non-unimodular Lie groups in physics, one finds affine groups [40] as the only examples
which are reasonably well-known. Of course, the above list is not exhaustive; it is however
extensive enough so that we do not lose much generality when assuming G to be unimodular.
Since it is instructive to see the differences or rather analogies in properties of left- and right
Haar measures when introducing them, we will in this section not assume unimodularity.
Starting from the next section however, G will always be unimodular.
With left and right Haar measures at hand we can define two notions of square-integrable
functions [41]:

Definition 2.12: Square-Integrable Functions on G

Let µL and µR be left and right Haar measures of G. Use the measures to define
two notions of integration and two scalar products between complex functions ψ,φ :
G → C as

⟨ψ|φ⟩ :=
∫
G

dµ(g)ψ∗(g)φ(g), µ = µL or µ = µR respectively. (2.15)

These two scalar products define the vector spaces L2(G,µL) and L2(G,µR) of
square-integrable, complex-valued functions on G. For simplicity, we often write
dg = dµL(g). If G is unimodular we always choose µL = µR, so that both spaces
coincide, and we can unambiguously write L2(G).
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We will often use the bra-ket notation and write |ϕ⟩ = ϕ.

One can show that L2(G,µL) and L2(G,µR) are Hilbert spaces [42].
Due to µR not necessarily being left-invariant, we can only generalize the representation
(2.11) to L2(G,µL), where we obtain the unitary left-regular representation. One can how-
ever introduce the unitary right-regular representation on L2(G,µR), which corresponds to
ψ(x) 7→ ψ(x + a) in the context of example 2.8. More precisely [41] (for details, see also
appendix B.2):

Definition 2.13: Left- and Right-Regular Representations

The left-regular representation L̂ on ψ ∈ L2(G,µL) is the unitary representation

(L̂(g)ψ)(g′) := ψ(g−1g′), ∀ g, g′ ∈ G, ∀ψ ∈ L2(G,µL). (2.16)

The right-regular representation R̂ on L2(G,µR) is the unitary representation

(R̂(g)ψ)(g′) := ψ(g′g), ∀ g, g′ ∈ G, ∀ψ ∈ L2(G,µR). (2.17)

In the unimodular case, we quickly see that:

Proposition 2.14: Left- and Right-Regular Representations Commute

Let G be unimodular, i.e. both L̂ and R̂ act on L2(G). Then:[
R̂(g), L̂(g′)

]
= 0, ∀ g, g′ ∈ G. (2.18)

Proof. For g, g′ ∈ G, ψ ∈ L2(G), we find

R̂(g)L̂(g′)ψ = R̂(g)
(
g′′ 7→ ψ(g′−1g′′)

)
= g′′ 7→ ψ(g′−1g′′g) = L̂(g′)

(
g′′ 7→ ψ(g′′g)

)
= L̂(g′)R̂(g)ψ. (2.19)

Analogously to δ-distributions on R [43], we define δg as the δ-distribution on G with peak
at g ∈ G [44]:

Definition 2.15: δ-Distributions on G

For g ∈ G, the action of the distribution δg on a test function ψ : G → C is set to be

δg[ψ] :=
∫
G

dµ(g′) δg(g′)ψ(g′) := ψ(g), (2.20)

where µ = µL or µ = µR depending on the context. We abbreviate δ := δe. In
bra-ket notation we write |g⟩ := δg and ⟨g|ψ⟩ = ⟨ψ|g⟩∗ := δg[ψ] = ψ(g).

The left- and right-regular representations are extended to δ-distributions as

L̂(g) |g′⟩ := |gg′⟩ , (2.21)
R̂(g) |g′⟩ :=

∣∣g′g−1〉 . (2.22)

The extension of the bra-ket notation to these distributions is analogous to how we work
with position states |x⟩ in the context of L2(R), see e.g. [30]. The extension of L̂ and R̂
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results in “scalar products” of the form ⟨g|ψ⟩ being conserved under L̂ and R̂.
The integral in (2.20) suggests that we can almost think of the δg’s as functions; and since
this works in the context of L2(R) (see e.g. [30]), we expect it to work here too. As shown
in proposition B.5 of appendix B.2, this is indeed the case. An important part of this result
is that we can extend scalar products to the δg’s as if they were functions.
We mention here some results in the unimodular case L2(G) (see proposition B.5 for the
more general case). Firstly, the extension of the scalar product yields

⟨g′|g⟩ = ⟨g|g′⟩ = δ(g′−1g) = δ(g−1g′) = δ(gg′−1) = δ(g′g−1). (2.23)

Notably, ⟨g′|g⟩ = 0 if g′ ̸= g. Secondly, the completeness relation holds:∫
G

dg |g⟩⟨g| = îd. (2.24)

Thirdly, it is possible to expand square-integrable functions ψ ∈ L2(G) as

|ψ⟩ =
∫
G

dg ψ(g) |g⟩ , (2.25)

similarly to the well-known expansion of functions in L2(R) in terms of position states |x⟩.
One can think of other distributions on G which can be thought of as functions: for instance,
any non-square integrable function, such as plane waves eik·x or Heaviside-step functions on
(Rn,+); another set of examples are various linear combinations of δ-distributions, including
infinite ones such as Dirac-combs on R. One can formally extend the scalar product (2.15)
for all these functions in an analogous way as for δ-distributions.
With all this preparation it is now easy to see the main result of this section:

Theorem 2.16: Perfect Quantum Frames from Regular Representations

H := L2(G,µL) with L̂ and C|e⟩ := {L̂(g) |e⟩ : g ∈ G} is a perfect quantum reference
frame for G.

The same is true for H := L2(G,µR) with R̂ and C|e⟩ := {R̂(g) |e⟩ : g ∈ G}.

The set C|e⟩ of classical state representatives is the same in either case.

These reference frames are widely used in the literature (see e.g. reference frame sources in
the introduction). From now on, when speaking of perfect quantum reference frames, we
always mean those. Figure 2.1 illustrates how a clock hand whose angle states are orthogonal
can be seen as L2(U(1)), a perfect reference frame for the group of rotations around a single
axis.

Proof of theorem 2.16. By definition, C|e⟩ is an orbit of L̂ and R̂; in both cases it is equal
to {|g⟩ : g ∈ G}. Since there is a bijection between G and C|e⟩, the action of L̂ (R̂) must be
free; alternatively one may check directly that L̂(g) acting on |g′⟩ produces a different state
for every g ∈ G, and similarly for R̂(g). The orthogonality (B.8) implies that the states in
C|e⟩ are perfectly distinguishable.

2.4 Imperfect Reference Frames

An imperfect reference frame is a reference frame whose classical states do not perfectly
break the symmetry of G. This can happen in two ways: the classical states C are not
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Figure 2.1: Left: The perfect reference frame L2(U(1)) for the group U(1) of
rotations around a single axis can be thought of as the Hilbert space of a clock hand,
with mutually orthogonal definite-angle states |θ⟩, θ ∈ [0, 2π), i.e. eiθ ∈ S1 ∼= U(1),
as classical states.

Right: Quantum reference frames allow for superpositions of classical reference
frame states. Typically, not every reference frame state is a classical reference
frame state.

The group U(1) plays an important role whenever phases are involved. Quantum
reference frames for U(1) were thus among the first to be studied [3, 4], but also
more recently [23].

perfectly distinguishable, and/or the action of G could be non-free. Note that non-freeness
immediately implies imperfect distinguishability, since some classical reference frame states
will be identical. That is, we only demand property (b) in definition 2.2. Also, we will
exclude perfect reference frames from being special cases of imperfect reference frames.
The same logic defines imperfect quantum reference frames: the representation of G could
be non-free, and/or the classical reference frame state could be pairwise non-orthogonal.
We however would still like to be able to measure imperfect quantum reference frames, so
we require that the classical reference frame state loosely speaking form a positive operator-
valued measure (POVM) [45].6

We thus define:
Definition 2.17: Imperfect (Quantum) Reference Frame

Consider a physical system with state space Σ, acted upon by a representation U of
G. If there is a set of states C ⊂ Σ such that

(a) C is an orbit of G under U (i.e. G acts transitively on C),

(b) Σ, U and C do not form a perfect reference frame,

then the system is called an imperfect reference frame for G with classical reference
frame states C.

Consider a quantum system described by the rigged Hilbert space H ⊂ H̄, Σ = Σ(H̄),
acted upon by a unitary representation Û of G giving rise to a representation U on
Σ. If there exists a subset C ⊂ Σ such that it satisfies the conditions (a) and (b)
above and for any representative C|Γ⟩ of C we have that7

∃ r > 0 ∀ |φ⟩ ∈ C|Γ⟩ : 1
r

∫
G

dg Û(g) |φ⟩⟨φ| Û†(g) = îd, (2.26)

6It would be sufficient to require that the classical states are part of a POVM; this would be a case where
measuring the imperfect reference frame can also result in other states (say corresponding to a “failed”
experiment) besides classical reference frame states. But we can exclude this possibility without loss of
generality by restricting our Hilbert space to the span of the orbit of classical states. For perfect reference
frames, the classical reference frame states are orthogonal and thus always part of a POVM.
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then we call the quantum system an imperfect quantum reference frame for G with
classical reference frame states C.

We will mostly be interested in imperfect quantum reference frames. Roughly speaking, a
quantum reference frame is imperfect, if dim span C|Γ⟩ < #G, where #G is the number of
elements in G. Our imperfect quantum reference frames correspond to the “incomplete”
and/or “non-ideal” reference frames studied in [13].
Note that if G is compact, then the integral (2.26) always converges. To see this, we consider
any matrix element ⟨ψ1|

∫
G

dg Û(g) |φ⟩⟨φ| Û†(g) |ψ2⟩ =
∫
G

dg ⟨ψ1| Û(g) |φ⟩⟨φ| Û†(g) |ψ2⟩,
which is the integral of a continuous function on G, and thus converges because G is com-
pact. This is true for all matrix elements, hence the integral in (2.26) is well-defined. If G
is non-compact, then this may no longer be the case.
Checking for completeness (2.26) is easy if Û is an irreducible representation, thanks to
Schur’s lemma [30]: any operator which commutes with the irreducible representation must
be a multiple of the identity. In our case,

∫
G

dg Û(g) |φ⟩⟨φ| Û†(g), assuming it is well-defined,
commutes with the representation:∫

G

dg Û(g′)Û(g) |φ⟩⟨φ| Û†(g) =
∫
G

dg Û(g′g) |φ⟩⟨φ| Û†(g)

=
∫
G

dg Û(g) |φ⟩⟨φ| Û†(g′−1g) =
∫
G

dg Û(g) |φ⟩⟨φ| Û†(g)Û(g′). (2.27)

Thus, if Û is irreducible and as long as the left-hand side of (2.26) is well-defined, the
completeness relation (2.26) is satisfied. We will state a more general version of this result
further down.
A labelling of classical states like in proposition 2.4 is still possible, even when the represen-
tation of G is non-free, if we allow for classical states to be labelled more than once:

Proposition 2.18: Labelling of Classical Reference Frame states

Given the classical states C of an imperfect quantum reference frame one can consider
the representative C|Γ⟩ = {|Γg⟩ : g ∈ G}, with

Û(g′) |Γg⟩ = |Γg′g⟩ , ∀ g, g′ ∈ G, (2.28)

allowing for each vector in C|Γ⟩ to be labelled multiple times if the representation Û
is non-free.

The same argument used in the proof of 2.4 works here too. An orbit {|Γg⟩}g∈G of states
satisfying a completeness relation (2.26) are sometimes called a set of coherent states [46]; we
will however not use this terminology and reserve “coherent” for so-called squeezed coherent
states of quantum particles in chapter 6.

7We will see further down that it makes sense to allow formally infinite constants r > 0.
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We mentioned earlier that quantum reference frames can be minimal too. This is for instance
possible with imperfect quantum reference frames:

Example 2.19

Let H be a finite-dimensional Hilbert space and G = SU(H) its special unitary group
acting in the defining representation on H. The orbit of any state σ ∈ Σ under the
defining representation is the entire state space Σ, because for any two unit-norm
vectors |ψ⟩ , |φ⟩ ∈ H, there exists a unitary operator Û such that |ψ⟩ = Û |φ⟩. This
also shows that the defining representation of SU(H) is irreducible.

To build a reference frame with H and the defining representation of SU(H), one
is thus forced to choose C = Σ and every potential quantum reference frame is
minimal. Also, this reference frame would be imperfect, if dim H < #SU(H). This
is the case for dim H > 1. The case dim H = 1 is trivial, since then SU(H) = {îd}.
For concreteness, we can take H = C2 and thus G = SU(2). One checks: dim H =
2 < #SU(2) = ∞.

For dim H > 1 it remains to check the completeness relation (2.26), to see whether
H with the defining representation of SU(H) is an actual imperfect reference frame.
The integral converges, because SU(H) is compact, and the relation holds, because
the defining representation is irreducible.

Formal Infinities If G is non-compact, then the integral on the left-hand side of (2.26)
is not always well-defined, as the following example illustrates:

Example 2.20

Take G := (R2,+), the group of vector addition in the plane, H := L2(R), and for
(a, b) ∈ R2, ϕ ∈ L2(R), define the representation (Û(a, b)(ϕ))(x) := eiφ(b)ϕ(x − a),
where φ : R → R is a continuous function such that φ(b) + φ(b′) = φ(b + b′). In
other words, our states are sensitive only to the translation component along one
axis, while the component along the other axis provides merely a phase. One checks
that this can be made to satisfy (a) and (b) in definition 2.17, e.g. by taking position
eigenstates as classical states.

For it to truly become an imperfect quantum reference frame, the completeness (2.26)
must be satisfied. we have∫

G

dg Û(g) |x⟩⟨x| Û†(g) =
∫
R

dadb |x− a⟩⟨x− a| . (2.29)

With no need for further manipulations we can see already now that
∫

db will intro-
duce a factor of ∞, surely rendering the left-hand side ill-defined.

We could solve this problem by restricting the integral
∫
G

to the subgroup of trans-
lations along the first axis. This would also make sense physically, since translations
along the other axis could in any case not be measured, removing the need for the
POVM to include those transformations. An equivalent way to deal with the prob-
lem is to leave the integral as is, but to formally normalize by the infinite constant
introduced through

∫
R db. We choose the latter option.

Naively, this example seems rather contrived. It however serves to illustrate an important
more general case: when our group factors topologically as G ∼= G′ × X, with G′ ⊂ G
an unbounded subgroup and X a topological space, such that µ = µ′ · µX , where µ′ is a
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Haar measure on G′ and µX a measure on X, and G′ acts through Û only as a phase (in
particular, if it does not act at all) then the integral is ill-defined. This can happen only if G
itself is non-compact.8 This precisely happens for the centrally extended Galilei group (see
section 5.3): besides translations and boosts, one also has “θ-translations” needed to make
the representation unitary; these latter translations take values in R, which is unbounded,
and act only through a phase factor on our Hilbert space. More generally, we can expect
divergences when considering central extensions of groups by a non-compact Abelian group,
such as (R,+) in the case of the Galilei group.9 Finally, it is conceivable that the integral
diverges also in some cases where G is non-compact, but there is no clearly identifiable
subgroup which acts only as a phase and hence introduces an infinity.
To deal with situations such as this, we loosen the definition 2.17 to allow for formally in-
finite proportionality constants in (2.26); equivalently, the left-hand side of (2.26) must be
a well-defined operator up to possibly a formally infinite constant. We will not be able to
explain these infinities rigorously using rigged Hilbert spaces, as they do not originate in
non-normalizable states, but rather in non-compact Lie groups. We will adopt the strategy
of treating these infinities as symbols for which arithmetic operations are partially defined,
and by meticulously keeping track of them. In particular, we allow addition, subtraction,
multiplication, division, and more general powers of these infinite symbols, enabling espe-
cially the “cancelling” of symbols. Importantly, one formal infinity can only be cancelled
by itself, and not by other formal infinities. Also, we cannot define expressions of the type
“0 · ∞” in general. One must investigate every case where these infinities occur separately.
This approach will be enough for us. The manipulation of formal infinities can however be
made precise, and we give a rigorous description in terms of field extensions of C in appendix
B.3.
In conclusion, we replace the real constant r > 0 in (2.26) with a possibly formally infinite
positive constant. If the infinite factor was a result of an unbounded subgroup acting only
as a phase, then its introduction into our calculations should not interfere with any physical
aspects, since the unbounded subgroup has no real physical meaning. In particular, we still
expect to be able to compute probabilities correctly. The case of the centrally extended
Galilei group relevant for us luckily falls into this category.

Irreducible Representations. With formal infinities in place, let us come back to the
special case of an irreducible representation. We can now more generally state:

Proposition 2.21: Imperfect Frames in Irreducible Representations

If Û on H, then the orbit of every |ψ⟩ ∈ H̄, for which 1
r

∫
G

dg Û(g) |ψ⟩⟨ψ| Û†(g) is a
well-define operator with r > 0 a potentially formally infinite constant, can be used
as classical reference frame states in order to define an imperfect reference frame.

This is simply a relaxation of the above statement, allowing for formally infinite constants.
8Unbounded G′ means µ′(G′) = ∞, which according to theorem B.4 is the case if and only if G′ is

non-compact. But G′ ∼= G′ × {x} for some x ∈ X is closed in G, and thus can only be non-compact if G is
non-compact.

9It is also possible to extend using a compact Abelian group [36], which could resolve some issues with
infinities. We briefly consider this option for the Galilei group in section 5.3; but since it leads to an
unnaturally quantized mass, we will not pursue this approach.
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A weak version of the converse also holds:
Proposition 2.22: Sufficient Condition for Irreducibility

If 0 ̸= 1
r

∫
G

dg Û(g) |ψ⟩⟨ψ| Û†(g) ∝ îd holds for all 0 ̸= |ψ⟩ ∈ H and is a well-defined
operator for some potentially formally infinite constant r > 0, then Û is irreducible.

Proof. Assume towards contradiction that H has an invariant, true subspace {0} ⊊ V ⊊ H.
Take then 0 ̸= |ψ⟩ ∈ V and 0 ̸= |φ⟩ ∈ V⊥. Because V is invariant, Û(g) |ψ⟩ ∈ V, ∀ g ∈ G,
and hence ⟨ψ| Û†(g) |φ⟩ = 0, ∀ g ∈ G. Thus, 1

r

∫
G

dg Û(g) |ψ⟩⟨ψ| Û†(g) has the eigenvalue
zero and cannot be a non-zero multiple of the identity, contradicting our assumptions.

This result will be useful later to prove that certain representations of the Galilei group
are irreducible. Note that one must check every state |ψ⟩ ∈ H at least up to scaling.
Note also that in these propositions, 1

r

∫
G

dg Û(g) |ψ⟩⟨ψ| Û†(g) can be well-defined while∫
G

dg Û(g) |ψ⟩⟨ψ| Û†(g) could diverge and thus not be well-defined.

2.5 Badness of Imperfect Quantum Reference Frames

Let us briefly turn to the task of assessing the usefulness of different imperfect quantum
reference frames. This will particularly be practical when dealing with explicit examples of
imperfect reference frames of the Galilei group in chapter 6. The assessment of “goodness”
or “badness” of imperfect reference frames can be approached in various ways and different
approaches can be useful depending on the circumstances considered; see e.g. [19] and [47]
for examples of approaches. We introduce here our own.
We will always work with a representative C|Γ⟩ of classical states and adopt a labelling like
in proposition 2.18.

Badness from Orthogonality of Classical States. Roughly speaking, we want to term
an imperfect reference frame as “worse” than another, if the classical states C|Γ⟩ of the former
have an overall larger overlap with each other, i.e. have higher fidelity [45], and are thus less
distinguishable than the classical states of the latter. So up to normalization, expressions of
the type ∣∣ ⟨Γg′ |Γg⟩

∣∣ (2.30)
should contribute to badness. A specific form of badness would then be to cumulate all
possible such overlaps; i.e. it would be the integral of (some function of) these overlaps over
g and g′. Equivalently, we may integrate (some function of)∣∣ ⟨Γe| Û(g′−1gg′) |Γe⟩

∣∣ (2.31)

over g and g′. Because G is assumed to be unimodular, the Haar measure is conjugation-
invariant, and we can substitute g ⇝ g′gg′−1, rendering the integral over g′ pointless.
Accordingly, we define:

Definition 2.23: Badness Measure of Imperfect Reference Frame

Given an imperfect reference frame C|Γ⟩ of G, a badness measure B(C|Γ⟩) is an
expression of the form

B(C|Γ⟩) =
∫
G

dg f
(
| ⟨Γe| Û(g) |Γe⟩ |

)
, (2.32)
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where f : R → R is a function.

Importantly, we can replace |Γe⟩ by any other |Γg⟩. This is important, since the badness
measure should not depend on the arbitrary choice of which classical state is labelled by the
identity.
Note that the “figures of merit” of [19] resemble these badness measures. They consider
the situation where classical reference frame states are used in a communication setting to
send information and states of reference frames are measured by a POVM which does not
necessarily correspond to the set of classical reference frame states; they go on to show that
it is sensible to align the POVM with the classical states.

A Naive Badness Measure. With the above considerations, we can define a simple
badness measure:

B(C|Γ⟩) := 1
|⟨Γe|Γe⟩ |2

∫
G

dg
∣∣ ⟨Γe| Û(g) |Γe⟩

∣∣2. (2.33)

The prefactor is chosen in order to yield a result independent of normalization of |Γe⟩. Due
to this normalization, the measure is even independent of representative and thus truly only
depends on the reference frame C; we can unambiguously write B(C) := B(C|Γ⟩). But
(2.26) implies that this measure is in fact uniform, and thus it is not at all useful.
It is interesting to note that [47] use a badness measure like (2.33), but instead of the
classical reference frame state |Γe⟩ they use the state of a system observed in the reference
frame in question. This state can still be made into an orbit under G by transforming it to
other reference frame orientations, but it does not necessarily satisfy a completeness relation,
rendering the badness measure more useful.

Weighted Badness Measures. We can make (2.33) more interesting if we introduce a
weight Ω0(g) ≥ 0. The weight allows us to specify which kinds of transformations g ∈ G we
deem more important than others. As an example which will be relevant later (for details,
see section 6.3), consider an imperfect reference frame for the Galilei group in one dimension
(essentially translations and boosts in one dimension); in a given context we might not be
able to measure position and velocity of particles with equal precision and so it would make
sense to require our imperfect frame to be more accurate for one of the two types of Galilei
transformations. Thus, a good badness measure would be one which weights one type of
transformation more than the other, as shown in figure 2.2.
Let us return to the general case. Naively, the weight would be introduced as a factor in
the integral (2.33), as

1
| ⟨Γe|Γe⟩ |2

∫
G

dgΩ0(g)
∣∣ ⟨Γe| Û(g) |Γe⟩

∣∣2. (2.34)

But when we do this, we find that in order for the expression to be invariant under
|Γe⟩ ⇝ Û(g′) |Γe⟩ = |Γg′⟩, g′ ∈ G, we would need Ω0 to be conjugation-invariant; that
is, Ω0(g′−1gg′) = Ω0(g),∀ g, g′ ∈ G. While our badness measure should be invariant under
|Γe⟩⇝ |Γg′⟩, we also want the freedom to truly weigh every group element as we please.
The reason for this unexpected result is that equation (2.33) is not the right place to in-
troduce Ω0. What we really want is to weigh every group element by Ω0(g) as we please,
but then integrate over all possible transformations between classical reference frame states,
which includes integrating the square of (2.31) over g′ ∈ G to reach every initial classical
reference frame state, and integrating over g ∈ G to obtain every transformation possible
starting from that initial state. Only in this second integral over g ∈ G do we introduce Ω0.
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Figure 2.2: A possible weight for a badness measure used to distinguish imperfect
reference frames for the Galilei group in one dimension. Here, we give little weight
to small translations and boosts (i.e. transformations close to e). This makes sense,
since small transformations are usually not as crucial to detect compared to large
ones. Furthermore, this weight prioritizes accuracy for boosts over translations.
Asymmetric weights like this make sense already because position and velocity are
not measured in the same units.

Thus, we define:

Definition 2.24: Weighted Badness Measure

A weight Ω0 : G → R≥0 defines a weighted badness measure for imperfect quantum
reference frames characterized by their classical states C:

B(C,Ω0) := 1
| ⟨Γe|Γe⟩ |2

∫
G

dg dg′ Ω0(g)
∣∣ ⟨Γe| Û(g′−1gg′) |Γe⟩

∣∣2. (2.35)

We allow formally infinite or infinitesimal weights and badness measures, as long as
they can be made finite by multiplying with a formal constant.

This is well-defined: choosing different representatives of C changes the integral by a factor,
which is counteracted by the normalization in front of the integral; changing the labelling
within a representative as |Γe⟩⇝ |Γg′′⟩ for some g′′ ∈ G amounts to a right-translation in g′

which leaves the Haar measure invariant, and thus does not change the integral. Note that
the integral over dg in contrast is not invariant under left- or right-translations for general
choices of weight Ω0.
It is possible [19] to obtain an expression for B(C,Ω0) similar to our first, flawed idea (2.34):

Proposition 2.25

The badness measure B(C,Ω0) can be written as

B(C,Ω0) = 1
| ⟨Γe|Γe⟩ |2

∫
G

dgΩ(g)
∣∣ ⟨Γe| Û(g) |Γe⟩

∣∣2, (2.36)

where
Ω(g) :=

∫
dg′ Ω0(g′gg′−1). (2.37)
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Ω is conjugation-invariant:

Ω(g′−1gg′) = Ω(g), g, g′ ∈ G. (2.38)

Thus, Ω is not a function on G, but on the conjugacy classes conj(G) of G; we also
say that Ω is a class function.

Conversely, given a class function Ω : conj(G) → R≥0,

Bconj(C,Ω) := 1
| ⟨Γe|Γe⟩ |2

∫
G

dgΩ(g)
∣∣ ⟨Γe| Û(g) |Γe⟩

∣∣2. (2.39)

is a well-defined weighted badness measure.

We show this in appendix A.1. Much of this result, especially the weight being a class
function, was already remarked by [19].
So after all, we obtain an expression of the form (2.34) with a weight which cannot always
be freely chosen everywhere on G. But, it is false that we do not have complete freedom
over the weight Ω0; rather, additional assumptions about our badness measure lead us to
naturally consider a certain average Ω of the weight Ω0, which happens to be a class function.
According to preference we can work with the definition (2.35) and a general weight Ω0, or
we can equivalently define the badness measure through (2.39), as characterized by the
averaged weight Ω(g) satisfying (2.38).
For non-compact Lie groups G we have |G| = ∞ (see theorem B.4), and every finite Ω0 will
give rise to an infinite Ω, since

Ω(e) =
∫
G

dgΩ0(geg−1) =
∫
G

dgΩ0(e) = |G| · Ω0(e). (2.40)

This is the reason why we allowed for formally infinite or infinitesimal weights and bad-
ness measures in definition 2.24. The infinities involved here are similar to the infinities
encountered earlier: both originate in non-compactness of G.

24



3. Transformations Between Perfect
Quantum Reference Frames

As mentioned above, a reference frame should provide a point of view to be taken, and one
should be able to transform between these views. In this chapter we construct a framework
of transformations between perfect quantum reference frames. As we will see, this essentailly
results in the framework introduced in [15]; our derivation however differs from the original
in two regards: Firstly, we take an “observer-first” approach by starting with the point of
view of an observer, a very familiar concept, while they start in the so-called external view
(which we will discover in section 3.3). Secondly, they work with algebras of observables as
well as transformations of observables, in a “Heisenberg-like” picture, we transform states
and employ a “Schrödinger-like” picture.
In section 3.1 we begin our “observer-first” approach by defining what states and Hilbert
spaces observers have access to, and derive the general form of a quantum reference frame
transformation. Section 3.2 then tackles the question of what an observer sees of their own
reference frame; it will make sense to assume that they only have access to features which
are invariant under G. This assumption then results in the existence of the external view
in section 3.3, and makes contact with the framework of [15]. We apply the framework in
section 3.4 and analyse the structure of states resulting from transformations. Finally, we
briefly explore in section 3.5 how the discussed framework contains a simple perspective-
neutral approach as a special case.

3.1 Observers and Transformations

Our discussion of quantum reference frame transformations begins by describing the Hilbert
spaces of any physical system of interest, including reference frames. But whenever we write
down the Hilbert space of a quantum system, we also obtain an (experimental) context in
which the system can be observed thanks to the observables defined on said Hilbert space.
Essentially, writing down a Hilbert space always comes with some implicit choice of “point
of view” from which the system is seen. Typically, this point of view is the “laboratory”
and we think of ourselves being able to perform the measurements described by observables.
But since we wish to develop a theory of such “points of view” using the quantum reference
frames introduced in the previous chapter, we must critically reevaluate this position.

Observers. Let us begin with two observers, Alice and Bob. Each observer carries a
reference frame, which we call A and B respectively. We will also consider another physical
system S which is not necessarily a reference frame, in order to study it from the points
of view of both observers. See figure 3.1. Instead of writing down the Hilbert space of the
total system from some external laboratory perspective, we directly take the view of either
Alice or Bob, and then define the operation of transforming between their views.
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A B
S

Figure 3.1: Alice A, Bob B and the physical system S they observe.

Let us for instance take the perspective of Alice. We would like Alice to be able to interact
with the world as we are used to from standard quantum mechanics. She should thus have
full access to the Hilbert space HB of Bob’s perfect reference frame, and the Hilbert space
HS of the physical system of interest. But does Alice also have access to a Hilbert space
HA describing her own perfect reference frame? And if she does, what state should her own
frame be in? We will not settle these questions here; instead we may assume that Alice has
access to HA, with physically meaningful restrictions on which states are allowed imposed
later on, in section 3.2. The same is true for Bob’s point of view, except that now the state
on HB could perhaps be subject to restrictions.
Recall that our group G then acts on HA and HB through the left-regular representations
L̂A and L̂B respectively. We assume that G acts on HS through a unitary representation
ÛS .
For now, we thus have:

Definition 3.1: Observers

Consider two observers Alice (A) and Bob (B), embodying the perfect quantum ref-
erence frames HA and HB respectively, and let a physical system S of interest be
described by the Hilbert space HS . The group G acts through the unitary represen-
tations L̂A, L̂B and ÛS on HA, HB and HS respectively.

Both observers describe physics using states on the Hilbert space

HABS := HA ⊗ HB ⊗ HS . (3.1)

That is, the state of the total system from Alice’s perspective is a density operator

ρ̂ABS|A : HABS → H̄ABS . (3.2)

The notation “|A” indicates that this state is to be understood from Alice’s point of
view; the state as seen from Bob is denoted by ρ̂ABS|B and generally different. The
state on S is obtained as usual through partial trace over all reference frames:

ρ̂S|A := trAB
(
ρ̂ABS|A

)
, (3.3)

and analogously for Bob’s system state ρ̂S|B . Analogously one obtains other reduced
states.

The above discussion easily extends to arbitrarily many observers: for each observer we
introduce another perfect reference frame factor in the total Hilbert space.

Reference Frame Transformations. Next, we need a reference frame transformation
taking us from Alice’s point of view to that of Bob. We denote this operation by U†

A→B .
Given ρ̂ABS|A, it should hold that

ρ̂ABS|B = U†
A→B [ ρ̂ABS|A]. (3.4)
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Of course, there should also exist the opposite transformation U†
B→A such that

U†
B→A = (U†

A→B)−1. (3.5)

In order to preserve the properties of density operators, we require reference frame transfor-
mations to be CPTP [45]; but since they are invertible, they must be unitary superoperators:1

U†
A→B [ · ] = Û†

A→B [ · ]ÛA→B , (3.6)

where Û†
A→B is unitary.

The “†” in U†
A→B and Û†

A→B in the notation describes what the transformation is intuitively
supposed to do: it should apply the unitary transformation Û†

S(g) to the S-part of the state
ρ̂ABS|A, where g ∈ G is the transformation required to reach Bob’s frame from Alice’s frame,
and should thus be selected according to the B-part of the state; similar requirements for
reference frame transformations are posed in [8]. More precisely, we require that

Û†
A→B |φ⟩A |g⟩B |ψ⟩S = |φ′⟩AB Û

†
S(g) |ψ⟩S , (3.7)

where |ψ⟩S is any system state, while |φ⟩A and |φ′⟩AB are some currently not further
specified states. Figure 3.2 illustrates this assumption for the case G = (R,+). We will
assume that |φ′⟩AB does not depend on |ψ⟩S : the system state should have no effect on the
transformation of reference frame states.

x
0 xB xS

A
B S Û†

A→B

x
0 xS − xB

B
S

Figure 3.2: Condition (3.7) in the case G = (R,+) of translations in one dimension,
where we can take position eigenstates of a quantum particle as classical reference
frame states. Alice sees Bob in a position eigenstate at position xB . For illustration
purposes we also assume that the system is a quantum particle, and that Alice
observes it in a position eigenstate at position xS . The condition (3.7) now ensures
that the relative distance between Bob and the system does not change when
transforming into Bob’s view. Note that we omitted Alice in Bob’s view, since we
make no assumption about how Bob sees her at this point.

We will further assume that the expression for Û†
A→B depends on the type of system S only

through the representation ÛS : if we replace the system S with S′, then the only change in
the expression for Û†

A→B is that ÛS′(g) is substituted for ÛS(g).

Finally, the inverse transformation should be of the same form as Û†
A→B , except that the

roles of A and B are interchanged:

Û†
B→A = ÛA→B = T̂AB · Û†

A→B · T̂AB , (3.8)

where T̂AB is the unitary operator which swaps A and B:

T̂AB |ψ⟩A |φ⟩B = |φ⟩A |ψ⟩B . (3.9)
1It came to our attention during the final stages of the thesis, that this unfortunately requires some

foresight to justify: We did not yet specify the restrictions on the state of an observer’s own frame, and
so we have not ruled out the possibility of this restriction being in the form of a restriction on the Hilbert
space, as is the case in the perspective-neutral approach. This would mean that U†

A→B would only have to
be unitary on that restricted subspace. We will argue in section 3.2, that it is instead physically reasonable
to restrict the set of density operators in a way which does not amount to restricting to a subspace. Thus,
unitarity of the full map U†

A→B makes sense again.
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This requirement can be seen as an incarnation of the principle of relativity: every reference
frame is to be treated equally [1, 2]. In particular, it must hold that

Û†
B→A |g⟩A |φ⟩B |ψ⟩S = |φ′⟩BA Û

†
S(g) |ψ⟩S , (3.10)

where |φ′⟩BA = T̂AB |φ′⟩AB , and thus does not depend on |ψ⟩S , and the form of Û†
B→A must

be independent of the choice of S, up to exchanging the representation ÛS .
These assumptions allow us to further characterize reference frame transformations:

Theorem 3.2: Quantum Reference Frame Transformations

An invertible reference frame transformation Û†
A→B : HABS → HABS satisfying

(a) Û†
A→B |φ⟩A |g⟩B |ψ⟩S = |φ′⟩AB Û

†
S(g) |ψ⟩S , for any |φ⟩A ∈ HA, |ψ⟩S ∈ HS ,

g ∈ G, and |φ′⟩AB is a state which depends only on g and |φ⟩A,

(b) The expression for Û†
A→B depends on S only through substituting the corre-

sponding representation ÛS .

(c) Û†
B→A = T̂ABÛ

†
A→BT̂AB ,

is of the form

Û†
A→B =

∫
G

dg dg′ |g−1⟩⟨g′|A ⊗ Ŵ (g) |g′⟩⟨g|B ⊗ Û†
S(g), (3.11)

where Ŵ (g) is a family of unitary operators parametrized continuously by g ∈ G,
and satisfying

Ŵ †(g) = Ŵ (g−1), ∀ g ∈ G. (3.12)

Û†
B→A is given by an analogous expression, with the roles of A and B interchanged.

We prove the theorem in appendix A.2.
Note that the form (3.11) implies

Û†
A→B |φ⟩A |g⟩B |ψ⟩S = |g−1⟩A |φ′′⟩B Û

†
S(g) |ψ⟩S , (3.13)

where |φ′′⟩ is a not further specified state. This fact conveys a kind of reciprocity of reference
frames: Alice’s reference frame appears in the opposite way to Bob, as Bob’s frame does to
Alice. Figure 3.3 shows this in the context of the example G = (R,+) of figure 3.2.

x
0 xB xS

A
B S Û†

A→B

x
0 xS − xB−xB

B
A S

Figure 3.3: The reciprocity of reference frame transformations implied by theorem
3.2 in the case of G = (R,+) and assuming position eigenstates in Alice’s view
makes sure that the relative distance between Alice and Bob is kept when trans-
forming into Bob’s view. Consequently, Bob sees Alice at the same distance from
himself as Alice sees Bob from herself, but on the opposite side.

Theorem 3.2 does not fix the precise form of reference frame transformations: any choice
of operators Ŵ (g) satisfying (3.12) in the theorem, gives rise to a family of reference frame
transformations (if we have two observers, there are two transformations, A → B and
B → A) consistent with our assumptions above. The ambiguity present in the choice of
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Ŵ (g) however only impacts the states of reference frames as seen by their own observer,
i.e. the state of A from Alice’s point of view and the state of B from Bob’s point of view.
To further specify Ŵ (g), we must discuss how observers see the state of their own reference
frame. We will do this in the next section.
We will again deal with arbitrarily many observers in a simple manner: any observer which
is not part of the reference frame transformation currently considered will simply be treated
as part of S. Furthermore, general reference frame transformations can always be built from
Û†
A→B and various swap operators: for instance, with four observers A, B, C and D we have

Û†
D→C = T̂ADT̂BCÛ

†
A→BT̂BC T̂AD. (3.14)

Finally, we note that a quantum reference frame transformation of the form (3.11) can be
rewritten as

Û†
A→B = T̂AB

∫
G

dg ŴA(g) ⊗
∣∣g−1〉⟨g|B ⊗ Û†

S(g), (3.15)

where ŴA(g) is Ŵ acting on A. This follows using the completeness relation (2.24).

Examples. Let us consider two examples of families of reference frame transformations:

Example 3.3: Transformation with Complete Reciprocity

One possibility is to assume that observers can measure their own reference frame
perfectly. It is then natural to require Alice to see her own reference frame in the
opposite way as Bob sees his, i.e. to extend the above-mentioned reciprocity to the
observer’s own frames. This assumption leads us to the following transformation:

Û†
A→B =

∫
G

dg dg′ ∣∣g−1〉⟨g′|A ⊗
∣∣g′−1〉⟨g|B ⊗ Û†

S(g). (3.16)

Essentially, it swaps and G-inverts the states of A and B while applying the correct
transformations to S.

Here, Ŵ (g) is the unitary G-inversion |g′⟩ 7→
∣∣g′−1〉 and thus g-independent. Since

the G-inversion is its own inverse, (3.12) is satisfied.

If we do not require observers to measure their own state perfectly, other options are possible.
We will follow this approach in the next section. More precisely, we will argue that an
observer cannot use their own reference frame to observe their own state, and thus the state
must be one which makes sense without a reference frame. We will provide more details in
the next section. We however mention already here the transformation introduced by [15],
which will also result from our discussion:

Example 3.4: Transformation of [15]

Another possible version of reference frame transformation is

Û†
A→B =

∫
G

dg dg′ ∣∣g−1〉⟨g′|A ⊗ |g′g⟩⟨g|B ⊗ Û†
S(g). (3.17)

Now, Ŵ (g) = R̂(g−1) = R̂†(g), which satisfies (3.12).
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This form of transformation will be useful because it factorizes as

Û†
A→B =

=: Û†
→B︷ ︸︸ ︷∫

G

dg L̂†
A(g) ⊗ |g⟩⟨g|B ⊗ Û†

S(g) ×

×
[∫

G

dg′ |g′⟩⟨g′|A ⊗ L̂†
B(g′) ⊗ Û†

S(g′)︸ ︷︷ ︸
=: Û†

→A

]†

, (3.18)

which is easily checked by a short computation. We will see in proposition 3.12 that
this factorization is a special case of an “almost-factorization” of Û†

A→B possible for
every reference frame transformation. This special case will give rise to an external
view, a way of describing physics independently of any observer.

Note also that when written in the form (3.15), this transformation takes the form

Û†
A→B = T̂AB

∫
G

dg R̂†
A(g) ⊗

∣∣g−1〉⟨g|B ⊗ Û†
S(g). (3.19)

A state |ψ⟩AB on AB is a wave function (g, g′) 7→ ψAB(g, g′) in L2(G × G); we can
similarly view a state |χ⟩S on S as a wave function x 7→ χS(x) over some (possibly
discrete space) X. Denoting the action ÛS(g) |χ⟩S =: [x 7→ (ÛS(g)χS)(x)], we find
by conditioning (3.19) with ⟨g|A ⟨g′|B that the action of Û†

A→B on wave functions is[
(g, g′, x) 7→ ψAB(g, g′)χS(x)

]
A→B7−→

[
(g, g′, x) 7→ ψAB(g′g−1, g−1)(ÛS(g−1)χS)(x)

]
(3.20)

Using right-invariance and inversion invariance of the Haar measure, we can directly
show using the scalar product (2.15) that this is unitary. This reference frame trans-
formation can thus also be defined completely without referencing delta distributions
on G. Similarly, the action of Û†

→A is[
(g, g′, x) 7→ ψAB(g, g′)χS(x)

]
→A7−→

[
(g, g′, x) 7→ ψAB(g, gg′)(ÛS(g−1)χS)(x)

]
(3.21)

3.2 G-Invariance of Reference Frame States

We now turn to the question of what Alice can observe of her own reference frame. We
will follow the principle that Alice cannot use her own reference frame to observe herself.
One option is that she always sees herself in the same way, similarly to how a point particle
in classical physics always has a position of zero relative to itself. We briefly investigate
this approach in example 3.5 below. This however leaves out the possibility of there being
internal information accessible to Alice without the use of a reference frame. We will thus
follow a more general approach where we only rule out the degrees of freedom in her state
of herself which require a reference frame.
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Intermezzo: A More Restrictive Approach. As claimed above, one can allow only a
single, special state for Alice’s reference frame from her point of view. By relativity, Bob
must then also always see that state of himself. This requires some tuning of the general form
of reference frame transformations. It can for instance be achieved with the transformations
in example 3.3 and the special state |e⟩:

Example 3.5

Assuming that observers see their own reference frame always in the special state
|e⟩ is equivalent to restricting their own Hilbert space to C, or even removing it
completely, since a single fixed state carries no information. In that scenario, the
reference frame transformation from Alice to Bob would be the unitary map Û†

A→B :
HA ⊗ HS → HB ⊗ HS given by

Û†
A→B :=

∫
G

dg
∣∣g−1〉

B
⟨g|A ⊗ Û†

S(g). (3.22)

I.e., Bob’s reference frame gets inverted and becomes Alice’s reference frame, while
unitaries act accordingly on S.

The transformations in [8] have this form.

G-Invariance and the G-Twirl. Let us first consider the more general problem deter-
mining which quantum states are physical in the absence of a reference frame. Let H be a
Hilbert space carrying a representation Û of G. It is generally accepted [15–22] that in the
absence of a reference frame for G, ρ̂ must be G-invariant, that is,

Û(g) ρ̂ Û†(g) = ρ̂, ∀ g ∈ G, (3.23)

which is equivalent to [
Û(g), ρ̂

]
= 0, ∀ g ∈ G. (3.24)

This is sometimes called the maximum entropy principle [19], since G-invariant states are
completely mixed with respect to the action of G in a sense that we will explain soon. States
which are not G-invariant contain unspeakable information [19] which appears as absolute
information in the absence of a reference frame, breaking the principle of relativity.
Let us see this idea at work with a simple example:

Example 3.6

Take G = (R,+) and consider HS = L2(R). In the absence of a reference frame
for translations, it makes no sense to e.g. say that S is in the position eigenstate
ρS = |x⟩⟨x|S . Essentially, we cannot speak of position if we do not know where the
origin is. And nevertheless speaking of position would imply an absolute position, in
violation of the principle of relativity.

More generally, any piece of information extractable from the state of S which is
not invariant under translations could be used to deduce some amount of absolute
position information. Hence, in the absence of a reference frame for G, we must
assume that the state ρ̂S on S is G-invariant.

With a reference frame present, it again makes sense to talk about state ρS which
are not G-invariant, since they are understood relative to the reference frame.
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Also, G-invariance generalizes to multipartite states: if H1 ⊗ H2 is a Hilbert space with the
representation Û1 of G acting on H1, we say that a state ρ on H1 ⊗ H2 is G-invariant on
H1 if [

Û1(g) ⊗ îd2, ρ̂
]

= 0, ∀ g ∈ G. (3.25)

A very useful tool for the manipulation of G-invariant states is the G-twirl [19]:

Definition 3.7: G-twirl

Let H be a Hilbert space with unitary representation Û of G. The G-twirl is the
superoperator

G[ · ] := 1
|G|

∫
G

dg Û(g) [ · ] Û†(g). (3.26)

For any state ρ̂ on H its G-twirl is G[ρ̂].

On the bipartite Hilbert space H1 ⊗ H2 with representation Û1 acting on H1, we
define the G-twirl on H1 as

G1 := G ⊗ id2, (3.27)

where G is the G-twirl on H1 defined above (using Û1 in place of Û).

Typically, we will have H1 = HA with Û = L̂A, etc. We then also speak of the “G-twirl on
A” or the “G-twirl on Alice’s frame”, etc. The G-twirl is useful thanks to its properties:

Proposition 3.8: Properties of the G-Twirl

Let H be a Hilbert space with unitary representation Û .

(a) G is CPTP.

(b) The G-twirl is a projector: G2 = G.

(c) The G-twirl G[ρ̂] of any state ρ̂ is G-invariant.

(d) G[ρ̂] = ρ̂ if and only if ρ̂ is G-invariant.

These properties also hold for G1 acting on the first factor of the bipartite Hilbert
space H1 ⊗ H2 if one replaces “G-invariant” with “G-invariant on H1”. A direct
consequence of (a) is that for all states ρ̂ on H1 ⊗ H2,

tr1
(
G1[ρ̂]

)
= tr1(ρ̂). (3.28)

A proof is provided in appendix A.3.
Essentially, G projects onto the subset of states which are G-invariant. This makes the G-
twirl an important tool when dealing with reference frame states as seen from the reference
frame itself, since these must be G-invariant. Instead of working with G-invariant states we
can now also work with G-twirled general states.

Refining the Reference Frame Transformations. As stated above, we allow only
those states of Alice in her own perspective, which can exist without a reference frame.
With the G-twirl this requirement is simply

GA
[
ρ̂ABS|A

]
= ρ̂ABS|A, (3.29)

where the G-twirl uses the left-regular representation L̂A. The same must of course hold
for Bob’s state ρ̂ABS|B , but with GA replaced by GB . Any reference frame transformation
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U†
A→B must thus conserve this property, i.e.

U†
A→B ◦ GA = GB ◦ U†

A→B . (3.30)

Besides the requirements in theorem 3.2 we take this as an additional requirement for quan-
tum reference frame transformations. We can then show that:

Proposition 3.9: Conservation of G-Invariance

Equation (3.30) holds if and only if for all g, g′ ∈ G

Ŵ (g) G [ · ] Ŵ †(g′) = G
[
Ŵ (g) [ · ] Ŵ †(g′)

]
. (3.31)

The proof is provided in appendix A.4.
Let us revisit the examples 3.3 and 3.4 of reference frame transformations and see whether
they satisfy proposition 3.9:

Example 3.10: Example 3.3 Generally Does not Conserve G-Invariance

In example 3.3, Ŵ (g) = Ŵ does not depend on g and is given by the inversion map
g′ 7→ g′−1, in particular satisfying Ŵ † = Ŵ . For some g ∈ G we now insert R̂(g) into
(3.31). Using proposition 2.14 and thus G[R̂(g)] = R̂(g), the left-hand side is then

Ŵ R̂(g)Ŵ = L̂(g), (3.32)

which can easily be checked by computing the action on |g′⟩. The right-hand side is

G[L̂(g)] = 1
|G|

∫
G

dg′ L̂(g′gg′−1). (3.33)

If G is Abelian, then the left- and right-hand sides are equal for all g ∈ G, be-
cause g′gg′−1 = g′g′−1g = g. If G is not Abelian, then there exist g, g′ ∈ G such
that g′gg′−1 ̸= g, and hence the two sides are not equal. Thus, the family of refer-
ence frame transformations in example 3.3 conserve G-invariance if and only if G is
Abelian.

Example 3.11: Example 3.4 Conserves G-Invariance

Clearly, a sufficient condition for (3.31) is[
Ŵ (g), L̂(g′)

]
= 0, ∀ g, g′ ∈ G. (3.34)

In example 3.4, we have Ŵ (g) = R̂†(g) = R̂(g−1), and thanks to proposition 2.14,
(3.34) holds. Consequently, the family of reference frame transformations in example
3.4 conserves G-invariance.

The failure of example 3.3 in the case of a non-Abelian group is closely linked to the existence
of states which are invariant under L̂, but not under R̂ (so-called L-invariant but not R-
invariant states), and vice-versa. We investigate this connection in appendix B.4.

3.3 External View

While we have excluded certain reference frame transformations such as those in example 3.3
by requiring conservation of G-invariance, there are still many remaining choices, example
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3.4 among them. We will now see another criterion by which one may distinguish various
reference frame transformations: the existence of an external view.

Factorization of Reference Frame Transformations. We begin by noting that all
reference frame transformations (including those which do not preserve G-invariance) can
be “almost”-factorized into two parts, and truly factorized in the case of example 3.4:

Proposition 3.12: (Almost-) Factorization of Frame Transformations

The reference frame transformation Û†
A→B can be written as

Û†
A→B =

∫
G

dg dg′ L̂†
A(g) |g′⟩⟨g′|A ⊗ Ŵ (g′−1g) |g′⟩⟨g|B L̂B(g′) ⊗ Û†

S(g)ÛS(g′) (3.35)

If Ŵ (g′−1g) |g′⟩ = |g⟩, i.e. if Ŵ (g) = R̂†(g), then Û†
A→B factorizes as

Û†
A→B = Û†

→B · Û→A, (3.36)

where

Û†
→A :=

∫
G

dg |g⟩⟨g|A ⊗ L̂†
B(g) ⊗ Û†

S(g) (3.37)

Û†
→B :=

∫
G

dg L̂†
A(g) ⊗ |g⟩⟨g|B ⊗ Û†

S(g) = T̂AB · Û†
→A · T̂AB . (3.38)

Proof. The expression for Û†
A→B from theorem 3.2 can be rewritten as

Û†
A→B =

∫
G

dg dg′ ∣∣g−1〉⟨g′|A ⊗ Ŵ (g) |g′⟩⟨g|B ⊗ Û†
S(g)

=
∫
G

dg dg′ ∣∣g−1g′〉⟨g′|A ⊗ Ŵ (g′−1g) |g′⟩
〈
g′−1g

∣∣
B

⊗ Û†
S(g′−1g)

=
∫
G

dg dg′ L̂†
A(g) |g′⟩⟨g′|A ⊗W (g′−1g) |g′⟩⟨g|B L̂B(g′) ⊗ Û†

S(g)ÛS(g′), (3.39)

showing the general case in the proposition. The special case is then easily checked.

For later it will be useful to introduce the superoperators

U†
→A[ · ] := Û†

→A[ · ] Û→A, (3.40)
U→A[ · ] := Û→A[ · ] Û†

→A, (3.41)

and analogously for U†
→B and U→B . With this we can write the reference frame transfor-

mations of example 3.3 as
U†
A→B = U†

→B ◦ U→A, (3.42)

and similarly for the inverse transformation. Also, note that Û†
→A does not differentiate

between B and S. In fact, it will sometimes be useful to consider a more general Hilbert
space HA ⊗ HQ, where HQ is any Hilbert space equipped with a unitary representation ÛQ
of G, and define on that space

Û†
→A :=

∫
G

dg |g⟩⟨g|A ⊗ Û†
Q(g). (3.43)

Similarly, Û†
→B does not differentiate between A and S and one can analogously generalize

Û†
→B , or for any other reference frame for that matter. The definitions of Û†

→A and Û†
→B
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in proposition 3.12 are then just special cases of this definition, with HQ = HB ⊗ HS and
HQ = HA ⊗ HS respectively.
Importantly, physical states, i.e. those which are G-invariant on the reference frame from
the point of view of the corresponding observer, become completely G-invariant once U→A

is applied [15]:

Theorem 3.13

It holds that
GAQ ◦ U→A = U→A ◦ GA, (3.44)

and equivalently
U†

→A ◦ GAQ = GA ◦ U†
→A. (3.45)

GAQ is the G-twirl on the whole system, i.e. using the representation L̂A ⊗ ÛQ.

In particular, this holds for Q = BS; and of course, one may replace A by B or by any other
reference frame. We reproduce the proof of [15] in appendix A.5.

External View. Û†
→B can be interpreted as selecting G-transformations according to the

state of B, and applying them to A and S; similarly Û†
→A selects transformations according

to A and applies them to B and S. Both can thus be seen as some kind of reference frame
transformations of their own; not quite, because they do not have the form required be
theorem 3.2. We will come back to this feature later.
Still, we can interpret the factorization Û†

A→B = Û†
→B · Û→A in case of example 3.4 as first

“jumping out of A” to an intermediate representation of the quantum state through the
application of Û→A, and then “jumping into B” through the application of Û†

→B . As for
reference frame transformations we include “†” in our notation to show how G acts on S
“when jumping in the direction of the arrow →”. The intermediate representation is a shared
midpoint for all possible reference frame transformations of any given state. We call the
intermediate representation of quantum states the external view.2

Thanks to theorem 3.13 physical states are completely G-invariant in the external view. As
explained earlier at the beginning of section 3.2, completely G-invariant states are considered
to be the only physical states in cases where no reference frame for G is available. In this
sense, the external view can be seen as an observer-independent description of the whole
physical system.
The specific reference frame transformation of example 3.4 has first been derived in [15],
starting with their version of the external view.3 Our approach so far began with the views
of observers and the general form of reference frame transformations between then; the
external view was then found as an interesting occurrence in a special case. We will now
argue that the occurrence of the external view is crucial. This will allow us to once and for
all single out the reference frame transformations of example 3.4, and show that our external
view cn also be seen as the external view of [15].

Forgetting about a Reference Frame. Since a state must be completely G-invariant
in the absence of a reference frame, we may also attempt to interpret the states in the
external view as resulting from physical states which were once understood relative to a third
observer, Charlie C, with perfect reference frame HC , before we “forgot” about Charlie. In

2As we will see, [15] also has a notion of external view, although a slightly different one. Moreover, they
begin their discussion by assuming this external view. To make full contact with the version of external view
in [15], some more work will be required, however ours and their notion will be compatible.

3They denote Û†
→A by “Û†

BS(gA)”, and Û†
→B by “Û†

AS(gB)”.
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order to “forget” Charlie we first trace out his reference frame and then perform a G-twirl
on the remaining system ABS, because the reference frame we used to observe the state has
just been removed. Alternatively, one can also G-twirl ABCS first and trace out C later.
As it turns out, these two version of forgetting are equivalent:

Proposition 3.14: Forgetting about a Reference Frame

Consider the Hilbert space HC ⊗HQ, where HC
∼= L2(G) is a perfect reference frame

for G and HQ is any Hilbert space carrying a unitary representation of G.4 The
operation of forgetting C, denoted by FC , can then be achieved by two equivalent
operations:

FC := GQ ◦ trC = trC ◦ GCQ, (3.46)

resulting in a completely G-invariant state on HQ.

The proof can be found in appendix A.6.
Note that the notion of forgetting about an observer and the resulting completely G-invariant
states always occur, irrespective of whether our reference frame transformations factor into
two jumps and hence irrespective of whether an external view exists. Now, after having
forgotten about an observer, we would like to be able to carry on with doing reference frame
transformations using the remaining observers. After all, ignoring one out of potentially
arbitrarily many observers should not hinder the functionality of the remaining ones. So for
any remaining observer, say Alice A, there must be a map V†

→A which turns the completely
G-invariant state left over after forgetting Charlie into a state in Alice’s perspective. In other
words, V†

→A must satisfy a requirement analogous to that of U†
→A described in theorem 3.13,

namely
V†

→A ◦ GAQ = GA ◦ V†
→A. (3.47)

A priori, V†
→A must only be CPTP, not necessarily unitary. If it is not unitary however,

then there is further information lost when applying V†
→A. Now this information can only

pertain to Charlie, since the functioning of all other frames and/or the remaining physical
system cannot be hindered by FC ; but this would mean that FC has not completely removed
all traces of C. It thus makes sense to assume that V†

→A is unitary. This then immediately
implies that any reference frame transformation factors into two jumps, and there exists an
external view as intermediate stage between the jumps:

U†
A→B = V†

→B ◦ V→A, V†
→B = TAB ◦ V†

→A ◦ TAB , (3.48)

where TAB [ · ] = T̂AB [ · ]T̂AB is the unitary superoperator which swaps the systems A and
B. The form of V†

→A can be restricted even more: in line with the principle of relativity,
V†

→A is only allowed to treat the subsystem A in a special way, but must act equally on all
systems contained in Q. Thus, we have found a very strong motivation for the existence
of the external view. We will assume that the external view exists and that U†

A→B factors
as in (3.48). Of course, the reference frame transformations in example 3.4 satisfy these
demands, with V†

→A = U†
→A. Figure 3.4 summarizes the relationship between forgetting an

observer, the external view and the jumps into reference frames.
There are currently two ways of arriving in the external view: one can jump to it from
a frame A by means of V→A, or one can consider a situation with an additional frame C
and forget about C through FC . Let us thus ask how they are related. Recall that FC can
be seen as a G-twirl followed by tracing out C. This implies that whatever information is
contained in every other part of the external view state is not related to C. Hence, it makes
sense to require that tracing out C in the external view (of the three observers A, B and C)

4In the presently discussed situation, we would have HQ = HA ⊗ HB ⊗ HS .
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external view

A B

C

V̂ †
→A V̂ †

→B

Û†
A→B

FC

Figure 3.4: Forgetting the observer C through FC leads us to the external view,
from where we can reach Alice’s or Bob’s view through the unitary jumps V̂ †

→A and
V̂ †

→B . The reference frame transformation Û†
A→B consequently factors as Û†

A→B =
V̂ †

→B · V̂→A.

has the same effect as forgetting C:

FC = trC ◦ V→C ◦ GC . (3.49)

This is the sense in which we take the two ways into the external view to be related.
Technically this must only hold for states which are G-invariant on C, hence the G-twirl on
C on the left-hand side.5 As it turns out, the reference frame transformations of example
3.4 also satisfies this second requirement:

Proposition 3.15: Jumps and Forgetting Observers

V→C = U→C satisfies (3.49).

We provide the proof in appendix A.7.

Uniqueness of Reference Frame Transformations. Having argued for the existence
of the external view by considering the act of forgetting about an observer, we now turn to
the question of uniqueness. Example 3.4 satisfies all our demands, and in some sense, it is
also the only possible reference frame transformation:

Theorem 3.16: Uniqueness of Reference Frame Transformations

Let Û†
A→B be a reference frame transformation satisfying the requirements of theorem

3.2, and which gives rise to an external view through the factorization

U†
A→B = V†

→B ◦ V→A, V†
→B = TAB ◦ V†

→A ◦ TAB , (3.50)

where V†
→A [ · ] = V̂ †

→A[ · ]V̂→A is unitary, acts on all subsystems besides A in the
same way, and satisfies

V†
→A ◦ GAQ = GA ◦ V†

→A, (3.51)

with Q denoting the subsystems besides A. (Note that this implies (3.30), i.e. UA→B

conserves G-invariance of the observer’s own frames).

Then Û†
A→B must be of the form

Û†
A→B = T̂ABX̂T̂AB · Û†

→BÛ→A · X̂, (3.52)

where X̂ = X̂A ⊗ îdQ is a unitary only acting on A.

5In fact, without this G-twirl the requirement would be too strong.
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Furthermore, compatibility of jumping into the external view and of forgetting ob-
servers follows:

FA = trA ◦ V→A ◦ GA. (3.53)

The unitary X̂A can be interpreted as a change of basis on observer’s own reference
frames, agreed upon by every observer. Thus, X̂A does not change the physics of
reference frame transformations, and we can without loss of generality take X̂A = îdA.

The proof can be found in appendix A.8. With this result, we can without loss of generality
stick to the reference frame transformations of example 3.4.
Note that the theorem does not further characterize the possible unitaries X̂A, since we are
mostly happy with the choice X̂A = îdA which is as good as any other. Let us nevertheless
make some remarks about possible X̂A. Firstly, a careful examination of the proof in
appendix A.8 shows that we must have

Ŵ (g) = X̂†
AR̂

†(g)X̂A, (3.54)

which must satisfy (3.12); but this is always the case. Secondly, Û†
A→B must satisfy (3.30).

One can show that this amounts to requiring

XA ◦ GA = GA ◦ XA, (3.55)

where XA [ · ] = X̂A [ · ] X̂†
A. This is for instance trivially satisfied (with XA ◦ GA =

GA ◦ XA = GA) if X̂A is any left-regular action. A non-trivial solution would be if X̂A is
any right-regular action and G is non-Abelian, since then there are states which are (left-)
G-invariant, but not right-G-invariant (see appendix B.4).

The External View of [15]. In [15], the external view is understood as the view of an
external observer, who needs no reference frame to observe physics. From there, jumps into
actual reference frames are derived (notably, resulting in the transformations of example
3.4), and it is argued that the resulting framework is independent of the choice of this
external observer. Importantly, the change from the external perspective into the “internal”
perspectives of reference frames such as Alice and Bob involves a G-twirl in the external
view (or equivalently, a G-twirl on the observer’s own reference frame states in their view,
see theorem 3.13).
Their external observer can be seen as our Charlie, with the difference that we go a step
further and model Charlie as an actual observer described by their very own reference frame.
We can make Charlie an “external observer” in the sense of [15], by tracing him out (without
G-twirl). The step back into the “internal” view is then made through the G-twirl, and hence
we recover our notion of forgetting Charlie.
Finally, the independence of the framework [15] from the external observer is a result compa-
rable to our interpretation of external view states being observer-independent. In summary,
the subtle difference between our approach and that of [15] is that for us, the “external
view” only holds G-invariant states, while the version of “external view” employed in [15]
holds general states seen by an external observer, which first have to be G-twirled prior to
jumping into an actual reference frame.

The External View as a Lab Frame. Consider again a state ρ̂ABCS|C in Charlie’s view.
But instead of forgetting him, we now simply trace him out to get the non-G-invariant state
ρ̂ABS := trC ρ̂ABCS|C . In [15], this would be a state seen by the external observer Charlie.
Does this state have any physical interpretation for us besides this?
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To answer this question we note the following:

Proposition 3.17: Alice’s Point of View on S

It holds that

trAB ◦ U†
→A[ · ] = trAB ◦ U†

B→A[ · ]

=
∫
G

dg
(

⟨g|A ⊗ Û†
S(g)

)
trB [ · ]

(
|g⟩A ⊗ ÛS(g)

)
. (3.56)

Also, performing GA just before trAB in either case does not change the outcome.
And the same results hold if we interchange the roles of Alice and Bob (i.e. replace
A↭ B).

We prove this in appendix A.9.
Essentially, jumping from external view into Alice’s frame or transforming there from another
observer’s frame is equivalent, when one is only interested in the outcome on the system S.
In this sense we can “abuse” the external view as a reference frame to prepare states in,
with the intention to then jump to actual reference frames, if we are finally only interested
in S; such a state may for instance be prepared by the procedure ρ̂ABS := trC ρ̂ABCS|C
explained above. Since we do not follow the rule of G-twirling after the observer is removed,
we can think of the external view as some kind of “lab frame” where a reference frame is
not necessary.
We want to stress that the interpretation of general states in the external view as a reference
frame only works indirectly, through Alice’s view on S after a jump from the external view.
The interpretation of G-invariant states in the external view as observer-independent states
for comparison holds in any circumstance.
Proposition 3.17 of course also clearly illustrate how transformations and jumps work when
considering S alone: the group elements g ∈ G selected by conditioning on A are applied
through Û†

S(g) [ · ] ÛS(g) on the system S, as we stressed many times in different contexts.
The resulting system state is typically mixed:

Example 3.18

Let |ϕ⟩A = |g1⟩ + |g2⟩, where g1, g2 ∈ G, g1 ̸= g2, let σB be a state with unit trace,
and let ς̂S be any state. Set ρ̂ABS = |ϕ⟩⟨ϕ|A ⊗ σB ⊗ ς̂S . From proposition 3.17 it
then follows that irrespective of whether we use ρ̂ABS as initial state for a jump to
Alice or a transformation to her, she will observe the system state

ρ̂S|A = δ(e)
[
Û†
S(g1)ς̂SÛS(g1) + Û†

S(g2)ς̂SÛS(g2)
]
. (3.57)

If the two terms are not proportional then ρ̂S|A is mixed. The factor δ(e) is due to
tr |g⟩⟨g| = δ(e).6

Such mixtures of system states are a feature exhibited only by quantum reference frames:
After the switch (jump or transformation) to Alice’s frame, AB holds the information about
the state of Alice’s frame before the switch, which in the example above was in a super-
position of classical states. We will now investigate this feature further, by no longer just
considering S.

6Recall from section 2.4 that we can deal with such formally infinite factors as we would with any other
symbol and so this is not further problematic. See appendix B.3 for details on how we treat such infinities
as well as states scaled by them.
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3.4 Structure of States & Relativity of Entanglement

Let us now apply the reference frame transformations we derived in the preceding sections
to physically interesting situations and investigate the states resulting from transformations.
We assume that Alice’s state is a product state

ρ̂ABS|A := GA[σ̂A] ⊗ |φ⟩⟨φ|B ⊗ ς̂S , (3.58)

where the A- and S-parts are general, but Bob’s reference frame state |φ⟩B =
∫
G

dg φ(g) |g⟩B
is pure. To declutter the notation we will usually not worry about normalization of either
the total state or the reduced states, since it can always be achieved with at most formally
infinite constants. Jumping into Bob’s frame results in

ρ̂ABS|B = U†
A→B [ρ̂ABS|B ] =

∫
G

dg1 dg2 ⟨g1|φ⟩⟨φ|g2⟩ ×

×
∣∣g−1

1
〉〈
g−1

2
∣∣
A

⊗ R̂†
B(g1)GB [σ̂B ]R̂B(g2) ⊗ Û†

S(g1) ς̂S ÛS(g2). (3.59)

Here, σ̂B is σ̂A taken as a density operator on B instead of A. This expression is most
readily derived from the form (3.19) of the transformation. Let us analyse the structure of
the state (3.59) more closely.

State on BS. Tracing out A is quite easy, yielding

ρ̂BS|B =
∫
G

dg
∣∣ ⟨g|φ⟩

∣∣2 · R̂†
B(g)GB[σ̂B ]R̂B(g) ⊗ Û†

S(g) ς̂S ÛS(g). (3.60)

Now g 7→ | ⟨g|φ⟩ |2 is up to a positive constant a probability distribution (it is one if ⟨φ|φ⟩ = 1
thanks to (2.24)), and ρ̂BS|B is thus a separable, hence non-entangled state [45].

State on AS & Relativity of Entanglement That there is no entanglement between B
and S is not surprising; if at all present, we would expect it between A and S, since B controls
the unitaries on S during the transformation, and the state on A after the transformation
reflects the state of B before. For transformations of the type of example 3.5, this is indeed
the case [15]. This phenomenon is called the relativity of entanglement: a state that one
observer sees as a product state may be an entangled state in the point of view of another.
To check for entanglement between A and S in our more general framework, we trace out
B. Without more assumptions on GB[σ̂B ] this is unfortunately not straightforward. But we
can already learn much from two extreme cases.
Firstly, take the standpoint that Alice knows nothing about her own state. Hence, we would
have σ̂A = îdA, which is G-invariant (GA[îdA] = îdA) and thus a valid state. Consequently,
R̂†
B(g1)GB[σ̂B ]R̂B(g2) = R̂(g−1

1 g2). Thus, tracing out B forces g1 = g2 as before, and7

ρ̂BS|B = |G|
∫
G

dg
∣∣ ⟨g|φ⟩

∣∣2 ·
∣∣g−1〉〈g−1∣∣

A
⊗ Û†

S(g) ς̂S ÛS(g). (3.61)

As we can see, this is again separable, hence not entangled. Even in the case where we do
not care at all about Alice’s own state we do not find relativity of entanglement as in [8];
the simple presence of a state describing Alice from her point of view seems to prevent it.
Secondly, we would like to find another extreme, where entanglement occurs. Because it
is generally very difficult to confirm entanglement in mixed states (see e.g. [48]), we will

7Here it is perhaps instructive to consider normalization. For proper normalization, we should use
îdA/tr îdA instead of îdA. Now, tr îdA = δ(e) · |G|, and so this already cancels the factor |G| in the result.
The additional factor 1/δ(e) compensates the fact that tr

∣∣g−1
〉〈

g−1
∣∣ = δ(e).
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construct an example using pure states. Let therefore ς̂S = |ψ⟩⟨ψ|S be a pure system state,
and let σ̂A = |ϕ⟩⟨ϕ|A be pure and such that GA[|ϕ⟩⟨ϕ|A] = |ϕ⟩⟨ϕ|A. The second requirement
can only be achieved if G acts in the trivial representation on |ϕ⟩A. As is explained in
appendix B.7, a subspace of L2(G) carrying the trivial representation is only guaranteed to
exist if G is compact; and for the centrally extended Galilei group (which is not compact),
there is none, as will become clear in section 5.4. In general, such a |ϕ⟩A will thus not exist
in L2(G), but it does in the larger space L2(G) [13].
Such trivial representation spaces in the larger space of a rigged Hilbert space construc-
tion are a central object of study in the so-called perspective-neutral approach to quantum
reference frames [9–14], similar to spaces found in the Page-Wootters formalism for time evo-
lution [28, 29]. The perspective-neutral approach builds on pure states, and thus roughly
speaking needs a notion of G-invariant pure states, leading to the consideration of subspaces
which transform trivially under G.
When working with G-invariant pure states, it makes sense to introduce the coherent G-twirl
(see [13], above sources, and [49]):

Ĝ :=
∫
G

Û(g), (3.62)

where Û is the representation on the Hilbert space in question.8 The coherent G-twirl has
similar properties to our (incoherent) G-twirl: it satisfies Ĝ2 ∝ Ĝ, and it holds that

L̂(g)Ĝ |ψ⟩ = Ĝ |ψ⟩ , ∀ g ∈ G. (3.63)

i.e. Ĝ acts proportional to the identity on coherently G-invariant states, and Ĝ |ψ⟩ transforms
in the trivial representation of G, even if this representation is not necessarily a subspace of
L2(G) for non-compact groups. The important difference to our G-twirl G is that Ĝ preserves
the purity of states. Finally, coherently G-invariant pure states are also G-invariant in our
sense, but the converse is not true.
If we now take |ϕ⟩A such as to satisfy ĜA |ϕ⟩A ∝ |ϕ⟩A, we can fulfil the above requirements
for the state Alice sees. Bob’s state (3.59) is now

ρ̂ABS|B = U†
A→B [ρ̂ABS|B ] =

∫
G

dg1 dg2 ⟨g1|φ⟩⟨φ|g2⟩ ×

×
∣∣g−1

1
〉〈
g−1

2
∣∣
A

⊗ |ϕ⟩⟨ϕ|B ⊗ Û†
S(g1) |ψ⟩⟨ψ|S ÛS(g2), (3.64)

If |φ⟩ is in a superposition of classical reference frame states, then this is entangled, as we
wanted to show. To completely make contact with the relativity of entanglement in [8], we
trace out B, yielding:

ρ̂BS|B = tr |ϕ⟩⟨ϕ|B
∫
G

dg1 dg2 ⟨g1|φ⟩⟨φ|g2⟩ ×

×
( ∣∣g−1

1
〉
A
Û†
S(g1) |ψ⟩S

) ( 〈
g−1

2
∣∣
A

⟨ψ|S ÛS(g2)
)
, (3.65)

which is also clearly entangled if |φ⟩ is in a superposition. There are other examples of
relative entanglement demonstrated in [8]; we will however not consider them here.

Relativity of Entanglement in General? We have seen that the simplest example
of entanglement relativity among those described in [8] does not generally occur in the
approach [15] considered here. More precisely, we were able to reproduce entanglement

8In contrast to the G-twirl (3.26) we do not divide by |G| here. This is done mostly to match the usual
definition (see e.g. [13]).
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relativity if Alice’s own state was taken to transform trivially under G. In hindsight, this is
not surprising, since assuming a trivial transformation is equivalent to not including Alice’s
own state at all, as is done in [8] (recall also example 3.5). Entanglement relativity did not
occur if a state of maximal entropy was taken for Alice’s own state.
The different outcomes (i.e. presence or absence of entanglement) could potentially be ex-
perimentally distinguished, and so the two extremes are not equivalent. This raises the
question of which way of dealing with Alice’s own state is correct: can she observe internal,
G-invariant degrees of freedom of herself as we assumed, or can she not observe herself at
all?
What is certain, is that our approach is able to model both possibilities, being general
enough. And if we allow internal degrees of freedom, then whether relativity of entanglement
occurs seems to depend on Alice’s state of knowledge about her internal degrees of freedom.
Finally, it should be mentioned that besides relativity of entanglement, one can also consider
the related relativity of partitioning of observable algebras described in [15]; it can be a
more powerful tool to gain insight into the structure of reference frame transformations
than relativity of entanglement.

3.5 Coherent, Perspective-Neutral Special Case

We saw in the previous section how employing methods from the coherent perspective-
neutral approach can help us reproduce relativity of entanglement. Here we briefly explore
how our approach allows for a simple implementation of a coherent perspective-neutral
formalism as a special case. But of course, as we argued in the introduction, such a formalism
will be incompatible with information theory of imperfect reference frames (e.g. [19]).

Jumps. Let |ψ⟩ABS be coherently G-invariant in the external view, i.e. such that

L̂A(g) ⊗ L̂B(g) ⊗ ÛS(g) |ψ⟩ABS = |ψ⟩ABS , ∀ g ∈ G. (3.66)

Writing ⟨g| = ⟨e| L̂†(g), we can compute the jump:

Û†
→A |ψ⟩ABS =

∫
G

dg
(

|g⟩⟨e|A ⊗ îdBS
) (
L̂†
A(g) ⊗ L̂†

B(g) ⊗ Û†
S(g)

)
|ψ⟩ABS

=
∫
G

dg |g⟩⟨e|A |ψ⟩ABS . (3.67)

In other words, the jump into Alice’s frame is obtained simply by conditioning |ψ⟩ABS with
⟨e|A on A and setting the state on A to the G-invariant state

∫
G

dg |g⟩A. The conditioning
becomes even more apparent if we also trace out A:

trA ◦ U†
→A

[
|ψ⟩⟨ψ|ABS

]
= |G| · ⟨e|A |ψ⟩⟨ψ|ABS |e⟩A . (3.68)

The factor |G| stems from tr
[( ∫

G
dg |g⟩

)( ∫
G

dg′ ⟨g′|
)]

= |G|.
Conditioning on the jumped-to reference frame is the central mechanism through which
jumps from the external view are carried out in perspective-neutral approaches [9–14].

Transformations. This coherent perspective-neutral special case is also capable of mean-
ingful reference frame transformations. For this, take Alice’s state to be |ψ⟩ = |ϕ⟩B |φ⟩AS
and coherently G-invariant on A. We then find using (3.19) that

Û†
A→B |ψ⟩ABS =

∫
G

dg ⟨g|ϕ⟩ ·
∣∣g−1〉

A

(
R̂†
B(g) ⊗ Û†

S(g)
)

|φ⟩BS . (3.69)
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The result is typically entangled, with different branches corresponding to different trans-
formations applied to BS, selected according to |ϕ⟩B .

43



4. Transformations Between Imperfect
Quantum Reference Frames

In the last chapter we introduced the unitary transformations between perfect quantum
reference frames, eventually making contact with the formalism of [15]. These transforma-
tions have been defined with an incoherent notion of G-invariance (i.e. we require (3.24) of
G-invariant states), and are thus compatible with the rich information theory of imperfect
reference frames mentioned in the introduction. Currently, we have achieved two of the three
requirements we posed for our formalism in the introduction. The remaining requirement
was that our formalism be capable of dealing with imperfect reference frames. In this chap-
ter we will thus take the formalism of previous chapter and extend it to imperfect reference
frames.
We begin by noting in section 4.1 that the formalism of last chapter cannot deal with imper-
fect reference frames without generally compromising unitarity. In section 4.2 we propose
to solve this problem by embedding imperfect reference frames into perfect reference frames,
and argue why this approach also makes sense physically. Section 4.3 is concerned with
constructing this embedding and discusses its properties. In section 4.4 we then discuss the
view of observers in imperfect frames in light of the embedding and see that transformations
between imperfect reference frames truly need the larger, perfect reference frames into which
the imperfect frames are embedded, in order to remain unitary. Finally, we discover an im-
portant trait of imperfect reference frames in section 4.5: transforming into an imperfect
reference frame results in a “fuzzy view” onto the world, even if the reference frame was
in a classical reference frame state before the transformation (more precisely, the observed
system states are always mixed, centred around the state expected from perfect frames).

4.1 The Problem of Unitarity

The reference frame transformation of [15] which we derived in the previous chapter is

Û†
A→B =

∫
G

dg dg′ ∣∣g−1〉⟨g′|A ⊗ |g′g⟩⟨g|B ⊗ Û†
S(g). (4.1)

Let us try to adapt it to serve also as transformation between imperfect reference frames.
The most straightforward approach would be to replace the classical perfect reference frame
states by classical imperfect reference frame states, that is |g⟩R ⇝ |Γg⟩R̃; here, R is either
A or B, and R̃ is either Ã or B̃. To distinguish perfect and imperfect reference frames
we denote imperfect reference frames with a tilde. Thus, our attempt at a reference frame
transformation between imperfect frames would be

Û†
Ã→B̃

=
∫
G

dg dg′ ∣∣Γg−1
〉
⟨Γg′ |Ã ⊗ |Γg′g⟩⟨Γg|B̃ ⊗ Û†

S(g). (4.2)
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This new transformation would act on a pure state |ψ⟩ABS = |ϕ⟩Ã |φ⟩B̃ |χ⟩S as

Û†
Ã→B̃

|ψ⟩ABS =
∫
G

dg dg′ ⟨Γg′ |ϕ⟩ ⟨Γg|φ⟩
∣∣Γg−1

〉
Ã

|Γg′g⟩B̃ Û
†
S(g) |χ⟩S . (4.3)

Unsurprisingly, the transformations which act on S are selected according to the state on B,
as was the case for transformations between perfect reference frames. Û†

Ã→B̃
can certainly

deal with mixed states, and it can transform between imperfect reference frames. It is
however not unitary.
To see this, it suffices to construct a counterexample. Let us take a very simple one:

Example 4.1: Counterexample to Unitarity of Û†
Ã→B̃

Let the rotation φ ∈ G = U(1) by the angle φ act on H = C by multiplication of the
phase eiφ. Let the classical reference frame states be |Γθ⟩ := eiθ. In particular,

⟨Γθ′ |Γθ⟩ = |Γθ⟩⟨Γθ′ | = ei(θ−θ′). (4.4)

One readily checks that the above representation of G on C together with these
classical reference frame states defines an imperfect reference frame in accord with
definition 2.17 (note that the Haar measure is simply dφ, and G is compact). Let us
further simplify things by considering the system HS = C with G acting trivially.

We then compute, leaving out S since it is trivial:

ÛÃ→B̃Û
†
Ã→B̃

=
∫

[0,2π)
dθ1 dθ2 dθ′

1 dθ′
2×

× ⟨Γ−θ2 |Γ−θ1⟩
〈
Γθ′

2+θ2

∣∣Γθ′
1+θ1

〉 ∣∣Γθ′
2

〉〈
Γθ′

1

∣∣
A

⊗ |Γθ2⟩⟨Γθ1 |B
=
∫

[0,2π)
dθ1 dθ2 dθ′

1 dθ′
2 exp

(
i
[
θ2 − θ1 − θ′

2 − θ2 + θ′
1 + θ1 + θ′

2 − θ′
1 + θ2 − θ1

])
= 4π2

∫
[0,2π)

dθ1 dθ2 exp
(
i
[
θ2 − θ1

])
= 0. (4.5)

Hence, Û†
Ã→B̃

is not unitary.

We thus see that Û†
Ã→B̃

cannot be the solution to our problem. We will turn to another,
more successful approach in the next section.
Before doing this, let us pause and ask whether loss of unitarity (and a spectacular one at
that) in example 4.1 was only due to the contrived nature of the example. Upon closer
inspection we note that θ1 and θ2 were not forced to be equal, since the classical reference
frame states were not orthogonal. This is true for general imperfect reference frames, and
we thus always expect at least the integrals

∫
G

dg1 dg2 in the expression for ÛÃ→B̃Û
†
Ã→B̃

.
Now as we can infer from ÛÃ→B̃Û

†
Ã→B̃

in example 4.1, this means that ÛÃ→B̃Û
†
Ã→B̃

will
generally be a mixture of |Γg1⟩⟨Γg2 | in the B part, for all combinations of g1, g2 ∈ G. The
off-diagonal terms will typically prevent the expression from equalling the identity. Note
that in our example, off-diagonal and diagonal terms are essentially merged, since H = C
is one-dimensional. In conclusion, non-unitarity is expected to occur much more generally,
and we can confidently abandon the idea of Û†

Ã→B̃
. However, as we will see in section 4.4,

Û†
Ã→B̃

still has a physical meaning: it describes what Alice thinks Bob sees based on her
own state.
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4.2 Embedding of Imperfect Quantum Reference Frames

Our interest in imperfect reference frames was mostly motivated by practical limitations:
quantum objects in nature typically satisfy some kind of uncertainty relation, which prevent
us from using them as perfect quantum reference frames. For instance, a quantum particle
cannot be used as a perfect quantum reference frame for the Galilei group, as we will see in
section 6.1.
Our interest in unitarity on the other hand is less inspired by practical aspects and rather
by conceptual ideas: our reference frames and systems in a sense should exist in their own
right and can simply be “marvelled at” from different perspectives, corresponding to the
points of view of our reference frames; this idea is nowhere as clear as in the existence of the
external view described in section 3.3. As walking around a sculpture in a museum does not
alter the sculpture in any way, we do not want that transforming from one reference frame
to another is in any way irreversible.
Now, from certain points of view one might not be able to see the sculpture very clearly.
Analogously, we can take the standpoint that in imperfect reference frames, one simply
cannot see the rest of nature (observed system and other reference frames) clearly, but that
if one had access to a perfect reference frame, the view would be better. This gives rise to the
idea that imperfect quantum reference frames should in principle be able to be improved,
until they become perfect, without at all changing the rest of nature they observe.
We thus propose the idea that any imperfect quantum reference frame, corresponding to the
point of view of some physical object, can be understood as part of a larger, perfect quantum
reference frame, which is however ideal in the sense that it cannot be fully accessed by the
observer due to the limitations of the physical object. This leads us to embed physical imper-
fect quantum reference frames into ideal perfect reference frames through homomorphisms,
i.e. HR̃ → HR. Again, we denote imperfect frames with a tilde and perfect frames without.
The reference frame transformations would then occur between these ideal perfect frames,
thus ensuring unitarity. Observers would however not have access to the full Hilbert spaces
of the ideal frames, but only to the subspaces corresponding to the embedded imperfect
frames.
Interpreting imperfect reference frames as part of perfect reference frames is also interesting
from a purely mathematical standpoint, since L2(G) contains irreducible representations
as subspaces (see section 5.4 for details; particularly, if G is compact, then every finite-
dimensional irreducible representation of G is contained [41]).1 One can even show [19] that
for compact G, imperfect reference frames are “better” if they are larger subspaces of L2(G).

4.3 Embedding Construction

We now turn to constructing an embedding of an imperfect quantum reference frame with
Hilbert space HR̃ into a perfect quantum reference frame with Hilbert space HR. This
embedding should conserve probabilities, hence it should be an isometry. Also, we would
like it to be compatible with the representations of G on HR and HR̃.

1Based on this mathematical fact, the supervisors Esteban Castro-Ruiz and Ladina Hausmann originally
devised the idea of embedding imperfect frames into perfect ones, shortly before the start of the thesis. Thus
was born the motivation for this work.
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Provisionally, we will define an embedding HR̃ → HR to be a homomorphism with these two
properties.2 The following result characterizes homomorphisms HR̃ → HR with the above
two properties:

Proposition 4.2: Characterization of Embeddings

Let HR̃ be an imperfect quantum reference frame for G with unitary representa-
tion ÛR̃, and let HR be a perfect quantum reference frame for G with left-regular
representation L̂. Consider a homomorphism Ê : HR̃ → HR which

(a) preserves scalar products, i.e. is an isometry:

⟨ψ| Ê†Ê |φ⟩ = ⟨ψ|φ⟩ , ∀ |ψ⟩ , |φ⟩ ∈ HR̃, (4.6)

(b) preserves the representation structures, i.e.

ÊÛR̃(g) = L̂R(g)Ê, ∀g ∈ G. (4.7)

Any such Ê is of the form

Ê = Ê(αe) :=
∫
G

dg |g⟩⟨αg| , |αg⟩ = ÛR̃(g) |αe⟩ , ∀ g ∈ G, (4.8)

where |αe⟩ ∈ H̄R̃ is a not necessarily normalized or even normalizable vector, such
that

Ê†(αe)Ê(αe) = îd. (4.9)

(4.9) is a completeness relation, since for every |ψ⟩ ∈ H̄R̃ it holds that

Ê†(ψ)Ê(ψ) =
∫
G

dg ÛR̃(g) |ψ⟩⟨ψ| Û†
R̃

(g). (4.10)

The proof is provided in appendix A.10.
We see that the embedding Ê is completely determined by the choice of a seed state |αe⟩ ∈
H̄R̃ such that Ê†(αe)Ê(αe) is the identity. Once an embedding Ê is chosen, starting from an
imperfect reference frame state |ψ⟩R̃ we can now obtain a corresponding perfect reference
frame state |ψ⟩R := Ê |ψ⟩R̃. The orbit of states ÛR̃(g) |αe⟩ generated by the seed state
intuitively determines which imperfect reference frame states are mapped to roughly what
perfect reference frame state. It would thus make sense to have

|αe⟩ = 1√
r

|Γg⟩ , (4.11)

where r > 0 is the constant stemming from (2.26); i.e. we would want to identify the orbit
of the seed state with the classical reference frame states.

Formal Infinities. Still, the identification of classical states and embedding orbit states
does not always work: it fails if r is formally infinite, because Ê(Γe)/

√
r would then no

longer be a well-defined homomorphism. But as we have seen while introducing imperfect
reference frames in section 2.4, formal infinities are necessary to capture some cases of
reference frames. The same is true for embeddings.

2Later it will also be necessary to allow for infinite normalizations in the most general case.
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Let us thus refine what we mean by an embedding:

Definition 4.3: Embedding

Let |Γe⟩ ∈ H̄R̃ be a not necessarily normalized or even normalizable state and r > 0
a formal constant which could be infinite. Then the formal homomorphism

Ê := Ê(Γe)√
r

= 1√
r

∫
G

dg |g⟩⟨Γg| , |Γg⟩ = ÛR̃(g) |Γe⟩ , ∀ g ∈ G (4.12)

defines a embedding of the imperfect quantum reference frame HR̃ ⊂ H̄R̃ into the
perfect quantum reference frame HR ⊂ H̄R if

Ê†(Γe)Ê(Γe)
r

= îd (4.13)

is formally satisfied.

If r > 0 is finite and hence Ê is a well-defined operator, then we say that Ê is a non-
formal embedding. If r > 0 is instead formally infinite and hence Ê is only formally
defined, then we say that Ê is a formal embedding.

Formal embeddings still formally satisfy the two properties (a) and (b) in proposition 4.2,
allowing a formally infinite r is thus reasonable. While non-formal embeddings are easier
to work with, we are sometimes forced to consider formal ones. This will for instance be
the case for embedding imperfect reference frames of the one-dimensional Galilei group in
chapter 6. Recall that if G is compact, then the integral in (2.26) always converges, and
thus (4.13) holds with a real constant r. For compact G, embeddings are always non-formal.

Seed States in Irreducible Representations. Similarly to proposition 2.21, we can
use Schur’s lemma [30] to derive the following result:

Proposition 4.4: Seed States in Irreducible Representations

If ÛR̃ is irreducible on HR̃ then every |ψ⟩ ∈ H̄R̃, for which Ê†(ψ)Ê(ψ)/r is well-
defined with r > 0 a possibly infinite formal constant, can be appropriately scaled
such as to become a valid seed state for an embedding.

This will be useful for the case of the Galilei group in chapter 5, since the representations
we will be interested in are irreducible.

Applying the Embedding. With the embedding defined we can now use it to interpret
imperfect reference frame states as perfect reference frame states:

Definition 4.5: Embedding of Reference Frame States

Given the state ρ̂R̃ : HR̃ → H̄R̃ of an imperfect reference frame, we obtain the
corresponding state ρ̂R : HR → H̄R of the perfect reference frame through the
embedding:

ρ̂R := E[ ρ̂R̃], E [ · ] := Ê [ · ] Ê†. (4.14)
For pure states |ψ⟩R̃ ∈ H̄R̃, the embedded state |ψ⟩R ∈ H̄R is

|ψ⟩R := Ê |ψ⟩R̃ . (4.15)
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When dealing with multiple imperfect reference frames HÃ, HB̃ , etc. and the corre-
sponding perfect frames HA, HB , etc., we will distinguish the embeddings acting on
different frames by writing EA, EB , etc. and ÊA, ÊB , etc.

For later it will also be useful to introduce the “un-embedding” superoperators
E†[ · ] := Ê† [ · ] Ê, and similarly for E†

A, E†
B , etc.

If the embedding Ê is non-formal, and |ψ⟩R̃ ∈ HR̃, then the embedded state will also
be a proper state: Ê |ψ⟩R̃ ∈ HR. If Ê is however formal, then one typically finds that√
rÊ |ψ⟩R̃ ∈ H̄R, and so the embedded state Ê |ψ⟩R̃ is not even in the larger Hilbert space.

To illustrate this, consider the most extreme example:

Example 4.6: Formal Embeddings Require Very Large Vector Spaces

Let G be non-compact and take HR̃
∼= C to transform trivially under G. Then,

|Γg⟩ = |Γe⟩ for all g ∈ G. And hence for |ψ⟩ ∈ HR̃,

Ê |ψ⟩ = ⟨Γe|ψ⟩√
r

∫
G

|g⟩ (4.16)

is proportional to the constant wave function
∫
G

|g⟩ on G, which is an element of
H̄R. If G = (R,+), this constant wave function would be a plane wave with zero
momentum. To make Ê a formal isometry however, one requires r = |G|, which
makes Ê |ψ⟩ an infinitely scaled version of

∫
G

d |g⟩, a state which is not contained in
H̄R.

As before, we will deal with this problem by also allowing vectors in H̄R which have been
scaled by formally infinite constants; see appendix B.3.

4.4 Observers in Imperfect Reference Frames

After having defined the embedding of imperfect reference frames, we now turn to the points
of view of observers in imperfect frames.

Alice & Bob. In contrast to chapter 3, Alice and Bob (and other observers if needed) are
now no longer described by perfect quantum reference frames, but by the imperfect quantum
reference frames HÃ and HB̃ . These imperfect frames are considered part of perfect frames
HA and HB through the embeddings EA and BB , according to our idea in section 4.2.
There we also stated that Alice and Bob are assumed to now have access only to the space
HÃ ⊗ HB̃ ⊗ HS , and not the larger space HA ⊗ HB ⊗ HS . Their own states on HÃ and
HB̃ respectively will have restrictions, since the embeddings of these states on HA and HB

respectively must be G-invariant according to the framework in chapter 3. We will see
further down that these restrictions mean that their own states must again be G-invariant,
except that we now take the representations ÛÃ and ÛB̃ respectively in the G-twirl.

Reference Frame State Seen by an Observer. Focus now on one specific observer,
say Alice. Let HR̃ be an imperfect reference frame observed by Alice, and let HR be the
perfect frame into which HR̃ is embedded through E. HR̃ could be Alice’s or Bob’s frame.
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A general state ρ̂R on of the perfect frame is not necessarily an embedded imperfect state,
since Ê is merely an isometry, not an isomorphism:

Proposition 4.7: Characterization of Embedded Imperfect States

If Ê is a non-formal embedding, then

ÊÊ† = P̂im(Ê) (4.17)

is the orthogonal projector onto the image im(Ê) ⊂ HR of Ê.

If Ê is an informal embedding, then it still holds that ÊÊ† acts as the identity on
the image im(Ê) (which now also contains infinitely scaled vectors).

Consequently, for a general embedding Ê, a state ρ̂R of the perfect reference frame
is not an embedded imperfect state if

E ◦ E†[ρ̂R] ̸= ρ̂R. (4.18)

Furthermore, if Ê is non-formal, then the converse is also true: ρ̂R is an embedded
imperfect state if and only if E ◦ E†[ρ̂R] = ρ̂R.

We show this in appendix A.11.
So if a general state ρ̂R of the perfect frame may not be an embedded imperfect state, which
is the state observed by Alice? We take the standpoint that she should only see those aspects
of ρ̂R which can be understood in terms of embedded imperfect states. We implement this
by defining Alice’s observed state to be the “un-embedded” state

ρ̂u
R̃

:= E†[ρ̂R]. (4.19)

If ρ̂R = E[σ̂R̃] is an embedded imperfect state, then ρ̂u
R̃

= E† ◦ E[σ̂R̃] = σ̂R̃, as reasonably
expected. If ρ̂R is more general, then proposition 4.7 (at least for non-formal embeddings)
shows that ρ̂u

R̃
= E†[ρ̂R] = E† ◦ E ◦ E†[ρ̂R] projects onto the image of E and then un-embeds

the resulting state. Thus, (4.19) is a reasonable definition for the state observed by Alice.
Note that if ρ̂R is in the kernel of E†, then ρ̂u

R̃
= 0 and Alice observes no state at all.

Physically this simply means that ρ̂R contains no information whatsoever which could be
stored in an imperfect state. Thus, in that case it makes sense to define ρ̂u

R̃
to be the state

of minimal information [45], i.e. ρ̂u
R̃

:= îdR̃ up to normalization. To summarize:

Definition 4.8: Imperfect States Seen By Observers

Let ρ̂R be the state of a perfect reference frame, into which an imperfect refer-
ence frame HR̃ is embedded through the embedding E. An observer observing HR̃

(not necessarily the observer associated with the frame) then has access to the un-
embedded state (up to normalization)

ρ̂u
R̃

:=
{

E†[ρ̂R] if E†[ρ̂R] ̸= 0,
îdR̃ otherwise.

(4.20)
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Assume now that HR̃ is Alice’s own reference frame. Since ρ̂R must then be G-invariant, it
follows that ρ̂u

R̃
must also be G-invariant:

Proposition 4.9

It holds that
G ◦ E† = E† ◦ G. (4.21)

If R is an observer’s own frame and hence G[ρ̂R] = ρ̂R, then the un-embedded state
ρ̂u
R̃

of the observer’s own frame must be G-invariant as well.

Proof. The condition (4.7) implies Ê†L̂R(g) = Û(g)Ê†, showing (4.21). Thus, if G[ρ̂R] = ρ̂R,
then G[ρ̂u

R̃
] = G ◦ E†[ρ̂R] = E† ◦ G[ρ̂R] = E†[ρ̂R] = ρ̂u

R̃
.

Observables. An observer may wish to measure an observable ÔR̃ on their un-embdedded
state. This measurement can alternatively be understood as measuring the “embedded
observable” ÊÔR̃Ê†, a consequence of the cyclicity of the trace:

Proposition 4.10

It holds that
tr
(
ÔR̃Ê

†ρ̂RÊ
)

= tr
(
ÊÔR̃Ê

†ρ̂R
)
. (4.22)

More generally, let ÂR̃ and B̂R be operators on HR̃ and HR respectively; it then
holds that

tr
(
ÊÂR̃Ê

†B̂R
)

= tr
(
ÂR̃Ê

†B̂RÊ
)
. (4.23)

This provides another interpretation of the observer’s view: the observer can instead access
the perfect state ρ̂R, but only through measuring imperfect observables ÔR̃, which conve-
niently have no access to those degrees of freedom in ρ̂R not replicable by embedding an
imperfect state.

Jumping and Transforming into Imperfect Frames. Let us consider the situation
where an imperfect state is prepared either in the external view or the view of an observer,
before we jump or transform into the frame of another observer. For this, we compute
Û†

→AÊAB (for jumps) and Û†
A→BÊAB (for transformations), where ÊAB = ÊA ⊗ ÊB . We

denote the potentially infinite constants occurring in the embeddings by rA and rB respec-
tively.
The former is

Û†
→AÊAB =

∫
G

dg |g⟩⟨g|A ÊA ⊗ L̂†
B(g)ÊB ⊗ Û†

S(g)

= ÊB√
rA

∫
G

dg |g⟩A ⟨Γg|Ã ⊗ Û†
B̃

(g) ⊗ Û†
S(g). (4.24)

We have used (4.7) to pull out ÊB from the integral. Importantly, we could not pull
out ÊA, since for g ∈ G there is generally no state |ψg⟩ ∈ H̄Ã with the property that
|g⟩⟨Γg| = Ê |ψg⟩⟨Γg|, since such a state would have to overlap |Γg⟩ but be orthogonal to |Γg′⟩
for g ̸= g′ ∈ G; this is impossible, since the states {|Γg⟩}g∈G are not pairwise orthogonal.
We similarly find

Û†
A→BÊAB = 1√

rArB

∫
G

dg dg′ ∣∣g−1〉
A

⟨Γg′ |Ã ⊗ |g′g⟩B ⟨Γg|B̃ ⊗ Û†
S(g). (4.25)
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This time, we could not pull out any embeddings from the integral, for the same reason.
Let us check whether an initially embedded imperfect is still embedded after the jump or
transformation. We can do this by employing the criterion in proposition 4.7. For jumps,
we know from (4.24) that the reference frame not jumped-to, i.e. B in our case, will be
embedded (since ÊB could be pulled out), so we focus only on the jumped-to frame:

ÊAÊ
†
AÛ

†
→AÊAB = ÊAÊ

†
A

ÊB√
rA

∫
G

dg |g⟩A ⟨Γg|Ã ⊗ Û†
B̃

(g) ⊗ Û†
S(g)

= ÊB√
rA

∫
G

dg dg′ |g′⟩A ⟨Γg′ |Γg⟩⟨Γg|Ã ⊗ Û†
B̃

(g) ⊗ Û†
S(g) (4.26)

Because ⟨Γg′ |Γg⟩Ã ̸∝ δ(g′−1g), this is not equal to (4.24).3 Thus, states will generally not
be embedded states after having performed a jump from the external view. It is easy to see
that the same is true for jumps to external view, the only change being the removal of “†”
from the B̃- and S-parts of the expression. With a bit more work, but still with analogous
methods, one shows that generally

ÊABÊ
†
ABÛ

†
A→BÊAB ̸= Û†

A→BÊAB , (4.27)

and of course similarly for the inverse transformation. In conclusion, we have shown the
following:

Theorem 4.11: Jumps and Transformations need Perfect Frames

Jumps and reference frame transformations applied to embedded imperfect reference
frame states will generally not result in embedded imperfect reference frame states.

Intuitively, the additional resources provided by the perfect frames which were not already
there in the imperfect frames, are necessary for jumps and reference frame transformations.
This makes sense, since otherwise the embedding would not have been necessary for unitary
transformations and our first idea of section 4.1 should have worked.
We stated in the introduction that we were not so much interested in asking how one
observer thinks the view of another should look, but rather how different observer views can
be transformed to if we assume that they are part of a common reality. Now as it turns
out, our framework, geared to answer the second question, can also answer the first. To see
this, consider Alice who only knowing the imperfect state ρ̂u

ÃB̃S|A available to her wishes to
guess Bob’s state ρ̂u

ÃB̃S|B as well as she can. One guess would be for her to assume that the
perfect state ρ̂ABS|A is actually the embedding of ρ̂u

ÃB̃S|A. Under this assumption, Bob’s
imperfect un-embedded state would be obtained from her imperfect state through

Ê†
ABÛ

†
A→BÊAB = 1

rArB

∫
G

dg dg′ ∣∣Γg−1
〉
⟨Γg′ |Ã ⊗ |Γg′g⟩⟨Γg|B̃ ⊗ Û†

S(g). (4.28)

But of course, generally ρ̂ABS|A ̸= E[ρ̂u
ÃB̃S|A] and so her guess might not be correct. Note

that (4.28) up to a prefactor equals the transformation Û†
Ã→B̃

defined in (4.2) which we
considered in section 4.1. What started out as a failed idea for a unitary quantum reference
transformation became useful again in a slightly different context, as an answer to what
Alice thinks Bob sees.

3To see this more clearly, we can e.g. condition with ⟨g|A from the left.
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4.5 Mixture of Transformations: “Fuzzy View”
as a Sign of Imperfection

Consider the embedded imperfect state ρ̂ABS = EA[|ϕ⟩⟨ϕ|Ã]⊗EB [σ̂B̃ ]⊗ς̂S . Using proposition
3.17, the system state observed by Alice after a jump or transformation starting in the state
ρ̂ABS is

ρ̂S|A = trAB
(
U†

→A

[
ρ̂ABS

])
= trAB

(
U†
B→A

[
ρ̂ABS

])
=

tr
(
σ̂B̃
)

rA

∫
G

dg | ⟨Γg|ϕ⟩ |2 Û†
S(g)ς̂SÛS(g). (4.29)

To simplify the trace in front, we have used proposition 4.10. Similarly to example 3.18,
Alice observes a mixture of system states: each term in the mixture is a transformed version
of ς̂S , with transformations selected according to | ⟨Γg|ϕ⟩ |2.
In contrast to the case of perfect reference frames in example 3.18, mixtures of transforma-
tions now occur even if |ϕ⟩ = |Γg0⟩ for g0 ∈ G is a classical reference frame state, because
the classical states are not pairwise orthogonal. When switching into an imperfect reference
frame, there will always be a mixture of transformations applied to S. This “fuzzy view”
of S is a unique feature of imperfect quantum reference frames. We will later illustrate it
using the Galilei group in chapter 6.4; here, we investigate the phenomenon generally.

Setup. In what follows, we will often use the abbreviation

E(g) := ⟨Γg|ϕ⟩√
rA · ⟨ϕ|ϕ⟩

, ∀ g ∈ G, (4.30)

keeping in mind that E(g) depends not just on g ∈ G, but also on the imperfect reference
frame state |ϕ⟩ and on the seed state |Γe⟩ chosen for the embedding. The factors in E(g)
are chosen such as to make |E(g)|2 a probability distribution over G: from the completeness
relation (4.13) and (4.10) it follows that∫

G

dg |E(g)|2 = ⟨ϕ|
∫
G

dg |Γg⟩⟨Γg|
rA · ⟨ϕ|ϕ⟩ |ϕ⟩ = ⟨ϕ|ϕ⟩

⟨ϕ|ϕ⟩ = 1. (4.31)

|E(g)|2 can be seen as the probability density of measuring the |Γg⟩ among all other classical
reference frame states when |ϕ⟩ was prepared.

Entropy. A way to measure the amount of mixture in ρ̂S|A is the von Neumann entropy.
For a normalized state σ̂ of a quantum system described by a Hilbert space HQ is defined
as [45]4

H(σ̂) := −tr
(
σ̂ log2 σ̂

)
, (4.32)

where the base-2 logarithm is understood in terms of eigenvalues; one uses the convention
that 0 · log20 = 0. It holds that H(σ̂) = 0 if and only if σ̂ is pure, and

H(σ̂) ≤ log2(dim supp σ̂) ≤ log2(dim HQ), (4.33)

with equality in the first inequality if and only if σ̂ = îdsupp σ̂/ dim supp σ̂ and equality in
the second inequality if and only if σ̂ = îd/dim HQ. This follows easily from considering

4The standard notation for entropy in quantum information theory is H(Q)σ̂ , where Q labels the quantum
system. We will use a simpler notation only involving the state, since the system will always be at least
implicitly clear.
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an orthonormal which diagonalizes σ̂; see [45] for a discussion of the finite-dimensional
case. The infinite-dimensional case is not much harder, except that now log2(dim HQ)
and potentially log2(dim supp σ̂) must be seen as formal infinities, and îd/ dim HQ and
potentially îdsupp σ̂/ dim supp σ̂ are formally defined states.
Since our states are not necessarily normalized, we will work with a slightly more general
expression, see definition B.9 in appendix B.5:

H(σ̂) := −tr
(
σ̂

tr σ̂ log2
σ̂

tr σ̂

)
. (4.34)

Clearly, this reduces to (4.32) if the state is normalized as trσ̂ = 1. We briefly discuss the
more general expression (4.34) in appendix B.5; there we will see that the more general
expression works nicely with the most often encountered non-normalized states such as |g⟩,
g ∈ G, superpositions of such states, and mixtures.

Badness Measure. Let now ρ̂ABS = EA[|Γg0⟩⟨Γg0 |Ã] ⊗ EB [σ̂B ] ⊗ ς̂S be such that Alice is
in a classical reference frame state. Jumping or transforming into her frame gives

ρ̂S|A = C ·
∫
G

dg |E(g)|2 Û†
S(g)ς̂SÛS(g), C := tr

(
σ̂B
)

· ⟨Γg0 |Γg0⟩Ã . (4.35)

We wish to measure the amount of mixture induced by the various transformations on S.
We first note that if ς̂S is itself mixed, then H(ρ̂S|A) measures in part the mixture in ς̂S ,
which is not our intent. Let thus ς̂S = |χ⟩⟨χ|S be pure. We then note that if ÛS is trivial, it
follows from (4.35) that ρ̂S|A is pure, and accordingly, H(ρ̂S|A) = 0. This is however hardly
an interesting case. On the flip side, with fixed state on Ã, the entropy is maximized if the
states Û†

S(g) |χ⟩S are pairwise orthogonal; this is possible with HS = L2(G), |χ⟩S = |e⟩,
ÛS = L̂S and thus ⟨e|S ÛS(g) =

〈
g−1∣∣. The trace of ρ̂S|A in this case is

tr
(
ρ̂S|A

)
= C ·

∫
G

dg dg′ |E(g)|2 ⟨g′|S L̂
†
S(g) |e⟩⟨e|S L̂S(g) |g′⟩S = C · δ(e), (4.36)

where we have used (4.31). The entropy is then

H(ρ̂S|A) = −
∫
G

dg dg′ dg′′ ⟨g|S
|E(g′)|2

∣∣g′−1〉〈g′−1∣∣
S

δ(e) log2

( |E(g′′)|2
δ(e)

) ∣∣g′′−1〉〈g′′−1∣∣ |g⟩S

= −
∫
G

dg |E(g)|2 log2 |E(g)|2 + log2 δ(e). (4.37)

We will not worry much about the infinite second factor, as it only introduces a constant
shift; we will however note that if |E(g)|2 = δ(g), then the entropy becomes zero, as expected
for a pure state, since the first term cancels the second. Let us thus focus on the first term:

H(|E|2) := −
∫
G

dg |E(g)|2 log2 |E(g)|2 (4.38)

is the so-called differential entropy of the probability distribution |E(g)|2 (see e.g. [50]).
Since it is, up to an infinite constant offset, the maximum entropy of ρ̂S|A one can obtain
with a pure state on HS , we can see it as quantifying the mixture of ρ̂S|A induced by
transformations on S in the worst case. It is the measure of mixture we were looking for.
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It is not hard to see that H(|E|2) satisfies the requirements of a badness measure:

Proposition 4.12

H(|E|2) is a badness measure according to definition 2.23:

H(|E|2) =
∫
G

dg f
(
| ⟨Γe| ÛÃ(g) |Γe⟩ |

)
, (4.39)

where
f(x) := − x2

r ⟨Γe|Γe⟩
log2

x2

r ⟨Γe|Γe⟩
. (4.40)
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5. Galilei Transformations in One
Dimension

We mentioned in the introduction that quantum reference frames, particularly imperfect
ones, are expected to play an important role in quantum gravity [8, 10, 14, 15, 25–27].
In this chapter, we introduce two groups whose quantum reference frames are thought to
be of importance in that regard: the group of Galilei transformations in one dimension,
i.e. the group of translations and boosts. More precisely, we will introduce two groups
describing such transformations: the one-dimensional isochronous Galilei group Gal as well
as its central extension CGal. These groups will then be applied to quantum reference frame
transformations in chapter 6.
In section 5.1 we argue for the importance of Galilei transformations in low-energy quantum
gravity applications. Section 5.2 then introduces the one-dimensional isochronous Galilei
group as well as its mass-m representations, describing how massive quantum particles
transform under Galilei transformations. We also discuss the action of those representa-
tions in phase space, making use of the Wigner distribution formalism. While physically
very important, the mass-m representations are projective, and one must consider the cen-
trally extended, one-dimensional isochronous Galilei group to turn them into non-projective
unitary representations, which we do in section 5.3. Section 5.4 then closes with the repre-
sentation theory of the centrally extended Galilei group.

5.1 Importance of Galilei Transformations

Quantum reference frame transformations can help us understand quantum gravity, for
instance by describing the perspective of a mass in superposition. This could help us un-
derstand potential superpositions of gravitational fields in the low-energy regime (hence the
relevant group is the Galilei group): assuming that the gravitational field of a mass becomes
classical in the reference frame of said mass, one could transform into the frame of a mass in
superposition, perform calculations there, transform back again and possibly gain valuable
insight about the gravitational field of the mass in the original frame where the mass is in
a superposition. This idea is illustrated in figure 5.1. Furthermore, we think that the frame
of such a mass should be an imperfect one, because massive particles cannot be perfectly
localized in space, because they have to be also somewhat localized in momentum, which is
the case if the energy of the particle is limited (similar restrictions on measurements were
already remarked as early as [5]). Thus, we expect to be able to apply our framework of
reference frame transformations between imperfect reference frames.
In the context of gravity it is of course interesting to consider quantum reference frames
for a group G encoding spacetime symmetries: the Galilei group of classical relativity, the
Poincaré group of special relativity [1], or even the diffeomorphism group of general relativity
[2]. Treating the diffeomorphism group is sadly impossible with our framework, since it is not
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Figure 5.1: Left: A gravitating mass in spatial superposition, whose gravitational
field strength is measured by a well localized device (say a Cavendish-type exper-
imental setup). Without a theory of quantum gravity, we do not know the exact
form of the gravitational field of this mass, and we cannot predict what the device
measures. Right: When transforming into the frame of the mass, the gravita-
tional field may be assumed to become classical (light purple circles), allowing us
to predict the reading of the device. However, the device is no longer localized and
accordingly shows a mixture of readings. This thought experiment is again taken
up in the outlook, in chapter 7.

a finite-dimensional Lie group. Even discussing the Poincaré group would be too ambitious,
since one is forced to consider “mixtures” of space and time (as they commonly occur in
special relativity), which requires putting space and time somehow on equal footing. While
there are approaches to solve this issue (e.g. famously quantum field theory [51]), the problem
of time remains a largely open issue (see e.g. [52, 53]).
We will thus focus on the classical limit and consider the Galilei group here. For simplicity,
we will further consider only a single spatial dimension. Thanks to this, we will not have
to deal with rotations, whose quantum reference frames have been studied extensively (see
e.g. [19]), and wee can focus on translations and boosts exclusively. For a treatment of the
Galilei group in three dimensions, as well as its quantum-mechanical features, see [39].

5.2 Galilei Group

Abstractly, we can define the one-dimensional Galilei group as R × R equipped with vector
addition:

Definition 5.1: Galilei Group in One Dimension

The one-dimensional isochronous Galilei group, or Galilei group for short, is defined
as [15]

Gal(1) ∼= R × R, (a′, v′) · (a, v) := (a′ + a, v′ + v). (5.1)

We will abbreviate Gal := Gal(1).

Importantly for us, the Haar measure of the Galilei group is particularly simple:

Proposition 5.2: Haar Measure of Gal

Gal is unimodular with left and right Haar measure the Lebesgue measure on R2:

dg = d(a, v) := dadv. (5.2)

We derive this fact in appendix B.6. We always use this normalization of the Haar measure.
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Action on a Classical Particle. The physical significance of Gal is best understood by
considering the action on a classical particle with position and velocity degrees of freedom
(x, u), given by

(a, v) : (x, u) 7→ (a+ x, v + u). (5.3)

Gal thus acts on the particle through combinations of translations controlled by a, and
velocity changes, so-called boosts, controlled by v. It is readily seen that the particle can
be used as a perfect minimal reference frame for Gal provided that all particle states are
distinguishable.

Quantum Particle. More interesting for us is the group action on quantum particles, to
which we turn now. For an extensive treatment of a single quantum particle, see e.g. [30];
we recall here only its most important features. Later in section 6.1 we will see that a single
quantum particle cannot provide a perfect reference frame for Gal.
A quantum particle in one dimension is described by the Hilbert space L2(R). The degrees
of freedom x and u have become operators x̂ and û = p̂/m, where p̂ is the momentum
operator and m is the mass of the particle. The canonical commutation relations hold:

[x̂, p̂] = i · îd (5.4)

or equivalently, [x̂, û] = (i/m) · îd. Without loss of generality we take elements ψ ∈ L2(R) to
be the position-space wave functions, such that the position and momentum operators act
as

(x̂ψ)(y) = yψ(y), (p̂ψ)(y) = −i ∂
∂y
ψ(y). (5.5)

As for L2(G) we adopt bra-ket notation and often write states ψ ∈ L2(R) as |ψ⟩. One can
form the improper position basis from eigenstates |x⟩ of x̂; we normalize them such that

⟨x|x′⟩ = δ(x− x′),
∫
R

dx |x⟩⟨x| = îd. (5.6)

The improper function described by |x⟩ is the δ-distribution in position-space centred on x,
and one can write ⟨x|ψ⟩ = ψ(x) for every ψ ∈ L2(R).1 Improper eigenstates |p⟩ of p̂, i.e.
p̂ |p⟩ = p |p⟩, form the improper momentum basis of plane waves. We chose the convention

⟨x|p⟩ = 1√
2π

eipx, (5.7)

such that similarly to position eigenstates, we have

⟨p|p′⟩ = δ(p− p′),
∫
R

dp |p⟩⟨p| = îd. (5.8)

The convention (5.7) also ensures that x̂ and p̂ are related by a unitary Fourier transform.
We will work in the Schrödinger picture and thus see particle states as time-dependent,
while observables are not.2 Often we will however not care about time evolution at all and
consider physics on a single time slice by setting t = 0.

Action on a Quantum Particle. Gal acts on the quantum particle through the so-called
mass-m representation [15]:

1δ-distributions can also be understood through the method of chapter 2 applied to the Lie group (R, +).
2Except for potentially intrinsic time-dependence.
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Definition 5.3: Mass-m Representation of Gal

For m ∈ R, the mass-m representation of Gal acting on L2(R) is given by

Ûm(a, v) = exp
(
−i(ap̂+ vk̂m)

)
, k̂m := p̂t−mx̂. (5.9)

p̂ and k̂m are called the generators for translations and boosts respectively. We will
sometimes omit the subscript-m’s on the representation and the boost generator if
the mass is implicitly clear.

Note that k̂m intrinsically depends on time; this time-dependence is required in order for
time evolution of the particle (the Schrödinger equation) to be invariant under the action of
Ûm(a, v) [30].3 Let us mention the most important features of this representation:

Proposition 5.4: Properties of the Mass Representations of Gal

(a) The generators do not commute:[
p̂, k̂m

]
= im · îd. (5.10)

(b) The representation is unitary projective, and it holds that

Ûm(a′, v′) Ûm(a, v) = exp
(

im2 (av′ − a′v)
)
Ûm(a′ + a, v′ + v), (5.11)

(c) For m ̸= m′, the mass-m and mass-m′ representations are inequivalent, i.e.
there is no unitary operator V̂ such that for all g ∈ G, V̂ Ûm(g)V̂ † = Ûm′ .

(d) The actions on position and momentum states are

Ûm(a, v) |x⟩ = eimv (x+a/2+vt/2) |x+ a+ vt⟩ , (5.12)
Ûm(a, v) |p⟩ = e−i(a+vt)(p+mv/2) |p+mv⟩ . (5.13)

(e) If ψ(x) is the position-space wave function of a state, then Ûm(a, v) transforms
the wave function as

ψ(x) 7→ ψ(x− a− vt) eimv (x−a/2−vt/2). (5.14)

If ψ̃(p) is the momentum-space wave function, then Ûm(a, v) acts as

ψ̃(p) 7→ ψ̃(p−mv) e−i(a+vt)(p−mv/2) (5.15)

(f) For any 0 ̸= |ψ⟩ ∈ L2(R) we have the completeness relation

Ê†(ψ)Ê(ψ) =
∫

Gal
dg Ûm(g) |ψ⟩⟨ψ| Û†

m(g) = 2π
m

⟨ψ|ψ⟩ · îd. (5.16)

Thus, the mass-m representation Û is irreducible, and every such |ψ⟩ can be
rescaled into a seed state for an embedding.

The proof is presented in appendix A.12.
We see that momentum eigenstates are boosted into other momentum eigenstates. And

3After the proof of proposition 5.4 below, we briefly touch on this subject in appendix A.12.
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because momentum eigenstates are orthogonal, we can use them to turn the particle into a
perfect reference frame for the subgroup of boosts in Gal. However, since momentum eigen-
states are up to a phase insensitive to translations, we cannot extend this perfect reference
frame to the full Galilei group (even when ignoring the fact that the representation is pro-
jective and hence does not fit definition 2.9). For similar reasons, position eigenstates can
be used to make our particle into a perfect reference frame for the subgroup of translations,
but they also fail to provide a perfect reference frame for the full group. We will make these
ideas precise in section 6.2.

Action in Phase Space. The action of the mass-m representation Ûm can be illustrated
particularly nicely in phase space [30, 54–56]. Given a position space wave function ψ of our
particle, one introduces the Wigner quasiprobability distribution [54]:

Wψ(x, p) := 1
2π

∫
R

dy ψ
(
x− 1

2y
)
ψ∗ (x+ 1

2y
)

eipy, (5.17)

which is real and normalized: ∫
R

dxdpWψ(x, p) = ⟨ψ|ψ⟩ . (5.18)

Wψ is a quasiprobability distribution, since it can take on negative values on small areas
of phase space of the order of 2π [30].4 The only non-negative Wigner distributions of
pure states are those of squeezed coherent states, in which case the Wigner distributions are
squeezed (i.e. not necessarily rotationally symmetric) Gaussian distributions [57]; see also
figure 5.2. We will use squeeze coherent states in section 6.3. Importantly, far from every
properly normalized function on phase space is a Wigner distribution [58]. The Wigner
distribution Wψ can equivalently be computed from the momentum-space wave function ψ̃:

Wψ(x, p) := 1
2π

∫
R

dk ψ̃
(
p− 1

2k
)
ψ̃∗ (p+ 1

2k
)

e−ixk. (5.19)

That both ways of computing the Wigner distribution coincide is a consequence of the fact
that for two complex functions ψ, φ with Fourier transforms ψ̃ and φ̃,∫

R
dy ψ(x− 1

2y)φ∗(x+ 1
2y) eipy =

∫
R

dk ψ̃(p− 1
2k)φ̃∗(k + 1

2k) e−ikx. (5.20)

This can be shown with a straightforward computation.
Despite possibly negative parts, one may still think of Wψ as in some appropriate sense
describing the spread of ψ over phase space. This is further accentuated by the following
two results [30]: Firstly, if φ is another wave function, then

| ⟨ψ|φ⟩ |2 = 2π
∫
R

dx dpWψ(x, p)Wφ(x, p). (5.21)

Secondly, if Â is an operator, then one can construct its Wigner representation A(x, p) and
it holds that

⟨ψ| Â |ψ⟩ =
∫
R

dx dpWψ(x, p)A(x, p). (5.22)

The Galilei transformation (a, v) acts on Wψ as a simple phase-space shift:
4With units restored, they are of order 2πℏ = h.
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Figure 5.2: Several Wigner distributions. Left: The Wigner distribution of a co-
herent state with position x0 and momentum p0 is a Gaussian distribution centred
on (x0, p0), and everywhere positive. Right: The Wigner distributions of position
and momentum eigenstates have support on vertical and horizontal lines in phase
space. Shown are the Wigner distributions for |x0⟩ (red) and |p0⟩ (blue). Since
overlaps of states can be computed from overlaps of Wigner distributions, and be-
cause the Galilei transformation (a, v) shifts the Wigner distribution by (a, v) in
phase space, we immediately see that position eigenstates make a perfect reference
frame for translations but a terrible one for boosts, while momentum eigenstates
do the opposite.

Proposition 5.5: Mass-m Representation in Phase Space

The Galilei transformation (a, v) at t = 0 acts on the Wigner distribution Wψ of a
position-space wave function ψ as

Wψ(x, p)⇝Wψ(x− a, p−mv). (5.23)

Proof. According to (5.14) and (5.17), the transformed Wigner distribution is

1
2π

∫
R

dxdpψ
(
x− a− 1

2y
)
ψ∗ (x− a+ 1

2y
)

eimv(x−y/2−a/2)e−imv(x+y/2−a/2)eipy

= 1
2π

∫
R

dxdpψ
(
x− a− 1

2y
)
ψ∗ (x− a+ 1

2y
)

ei(p−mv)y = Wψ(x− a, p−mv). (5.24)

Finally, it will be useful to compute the Wigner distributions of position and momentum
eigenstates:

Example 5.6

The position eigenstate |x0⟩, x0 ∈ R, has the wave function δ(x − x0), and hence,
using (5.17),

Wx0(x, p) = 1
π
δ(2x− 2x0)eip2(x−x0) = 1

2π δ(x− x0). (5.25)

The momentum eigenstate |p0⟩, p0 ∈ R, has the wave function e−ip0x/
√

2π, and thus

Wp0 = 1
4π2

∫
R

dy eip0(x−y/2)e−ip0(x+y/2)eipy = 1
2π

∫
dy eiy(p−p0) = 1

2π δ(p− p0).
(5.26)

As expected, position and momentum eigenstates correspond to infinitely high “δ-
ridges” in phase space, parallel to the p- and x-axis respectively. This is also shown
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in figure 5.2.

5.3 Centrally Extended Galilei Group

Because the representation (5.9) of Gal acting on L2(R) described above is projective rather
than linear, the simple tools of linear representation theory do not apply. But as we have
already argued in section 2.2, one can consider the central extension of our group to turn
projective representations into non-projective ones [36].
In our case it is possible to see Ûm as a non-projective representation of a larger group
CGal := CGal(1), the centrally extended Galilei group. Furthermore, one can even argue
that the physically natural group to consider is not Gal, but CGal: very roughly speaking,
a rigorous treatment of Bargmann superselection rules [59] for mass, i.e. the mechanism
required to prevent superpositions of different particle masses in non-relativistic quantum
mechanics, requires mass to become a dynamical quantity, which implies the centrally ex-
tended Galilei group as the relevant symmetry group [39].
The centrally extended Galilei group CGal is defined as [15]:

Definition 5.7: Centrally Extended Galilei Group in One Dimension

The centrally extended, one-dimensional isochronous Galilei group, or centrally ex-
tended Galilei group for short, is defined as

CGal ∼= R3, (θ′, a′, v′) · (θ, a, v) :=
(
θ′ + θ + av′ − a′v

2 , a′ + a, v′ + v

)
. (5.27)

To check that this is indeed a group, we must show the associativity of the group multiplica-
tion, the existence of an identity element, and the existence of an inverse for each element.
Associativity follows from (av′ −a′v) + (a′ +a)v′′ −a′′(v′ + v) = (a′v′′ −a′′v′) +a(v′ + v′′) −
v(a′ + a′′) and the associativity of addition. The identity is

e = (0, 0, 0), (5.28)

and the inverse of (θ, a, v) is

(θ, a, v)−1 = (−θ,−a,−v). (5.29)

Compared to Gal, CGal now also contains “θ-translations”. We will see that these are
required to make the mass-m representations non-projective. Note that CGal is not Abelian
thanks to the third term in the θ-part of the group multiplication.
Analogously to Gal, we show in appendix B.6 that:

Proposition 5.8: Haar Masure of CGal

CGal is unimodular with left and right Haar measure the Lebesgue measure on R3:

dg = d(θ, a, v) := dθ da dv. (5.30)

We will always stick to this normalization of the Haar measure.
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Mass-m Representations Recovered. Let us now see why this larger group can capture
the irreducible mass-m representations of Gal as unitary (non-projective) representations:

Definition 5.9: Mass-m Representation of CGal

For m ∈ R, the mass-m representation of CGal acting on L2(R) is defined as [15]

Ûm(θ, a, v) := eimθÛm(a, v), (5.31)

where Ûm(a, v) is the projective representation of Gal encountered in definition 5.3.
Again, we sometimes omit the subscript-m if the mass is clear from the context.

The action of Ûm(θ, a, v) on different particle states and wave functions readily follows
from the action of Ûm(a, v) derived in proposition 5.4. Also, Ûm(0, a, v) = Ûm(a, v), and
so the mass-m representation of CGal clearly contains the mass-m representation of Gal.
The generators of translations and boosts are still p̂ and k̂m respectively; the generator of
θ-translations is the mass operator m̂ = m · îd. In this sense, it is possible to see θ as
“conjugate” to the mass m. More rigorously, a quantum system which is invariant under
θ-translations must conserve the mass m. This is related to the way in which θ-translations
naturally occur if one is studying superselection rules for mass m [39].
The irreducibility and inequivalence of the mass representations of Gal carry over to the
mass representations of CGal:

Proposition 5.10: Properties of the Mass Representations of CGal

(a) The mass-m representation of CGal is unitary non-projective.

(b) The mass-m representation of CGal is irreducible.

(c) For m ̸= m′, the mass-m and mass-m′ representations of CGal are inequivalent.

(d) For any |ψ⟩ ∈ L2(R) it holds that∫
CGal

dg Ûm(g) |ψ⟩ ⟨ψ| Û†
m(g) = 2π · δ(m)|0

m
⟨ψ|ψ⟩ · îd, (5.32)

where
δ(m)|0 := δ(m)|m=0 =

( ∫
R dθ eimθ)∣∣

m=0 =
∫
R dθ. (5.33)

Consequently, any such |ψ⟩ can be rescaled into a valid seed state for an em-
bedding.

We provide the proof in appendix A.13.

Compact Central Extension. The central extension of Gal into CGal further increases
the group measure by an infinite factor

∫
R dθ. As we see when comparing (5.32) to (5.16),

it makes the difference between a well-defined completeness relation in the case of Gal and
one in need of formally infinite normalization in case of CGal. To prevent this infinity,
one can alternatively extend Gal by a compact Abelian group, say U(1), instead of by the
non-compact Abelian group (R,+) [36].
The mass-m representations would then still be defined as in definition 5.9, except that θ
must now be understood modulo 2π. For Ûm to then be well-defined however, we need
m ∈ Z. Extending by U(1) has the effect of removing an annoying formal infinity, but it
also forces us to quantize the mass. While interesting, we did not investigate this possibility
further and instead decided on the central extension described above.
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5.4 Representation Theory of the Centrally Extended
Galilei Group

We begin this section by noting that CGal is not compact, and one can thus not rely on the
well-understood representation theory of compact topological groups, which we briefly cover
in appendix B.7. Nevertheless, we will see that the representation theory of CGal bears
many resemblances to that of compact groups.

Decomposition of L2(G). Without considering the representation structure for now, it
holds that

L2(CGal) ∼= L2(R3) ∼= L2(R) ⊗ L2(R) ⊗ L2(R) ∼=
∫ ⊕

R
dmL2(R) ⊗ L2(R)∗. (5.34)

This decomposition resembles the decomposition in the case of the Peter-Weyl theorem B.11,
with left and right subspaces taken to be L2(R). Importantly, the involved spaces are now
infinite-dimensional and the direct sum is continuous. (5.34) is of course also inspired by
the irreducible mass-m representations, indexed by m ∈ R, which we described earlier.
The decomposition (5.34) in fact even holds representation-theoretically [15]:

Theorem 5.11: Representation Theory of CGal

The left-regular representation L̂ of CGal acts on

L2(CGal) ∼=
∫ ⊕

R
dmL2(R)m ⊗ L2(R)∗

m (5.35)

(where we have added subscript-m labels on the copies of L2(R)) as

L̂ =
∫ ⊕

R
dmÛm ⊗ îd, (5.36)

where Ûm is the mass-m representation of CGal from definition 5.9. Similarly, the
right-regular representation R̂ of CGal acts as

R̂ =
∫ ⊕

R
dm îd ⊗ Û∗

m. (5.37)

If {|m, i⟩}i is an orthonormal basis of L2(R)m and

D
(m)
ij (g) := ⟨m, j| Ûm(g) |m, i⟩ (5.38)

are the matrix elements of the mass-m representation of CGal, then

|g⟩ =
∫
R

dm
∑
i,j

√
|m|D(m)

ij (g) |m, i, j⟩ ,

|m, i, j⟩ := |m, i⟩L2(R)m
|m, j⟩L2(R)∗

m
. (5.39)

For a detailed proof, see the appendix of [15];5 a similar result can be found in [39].
5It essentially proceeds by defining improper states (5.39) and then shows that they satisfy all properties

of δ-distributions, i.e. normalization and transformation behaviour under the right-hand sides of (5.36) and
(5.37).
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Essentially, the mass m now takes on the role of charge in the case of compact groups, and
the left/right subspaces are now infinite-dimensional irreducible representations rather than
finite-dimensional ones as in the compact case. Also, the number |m| replaces the factor
dim Hq/|G| in the compact case.
The decompositions (5.35), (5.36) and (5.37) show that within H = L2(CGal) one may find,
with infinite multiplicity, states which transform according to the mass-m representation
of definition 5.9 for any m when acted on by L̂. Since the decompositions are direct sums
and not tensor products, these subspaces are not subsystems. Thus, L2(CGal) cannot
immediately be seen as a collection of massive particles with different masses.6 This is
similar to how in a multi-spin system one may find subspaces transforming under different
spin representations [30], but these different spin values do not correspond to the spins
composing the system. Rather, L2(CGal) can be interpreted as describing a pair of particles
with equal but variable masses, one particle susceptible only to L̂ and the other only to R̂.7

The Observers’s Own Frame as a Particle. In the framework of quantum reference
frame transformations considered in the previous chapters (essentially [15]), we required
reduced state of an observer’s own reference frame (i.e. the state they see of their own
frame) to be G-invariant. Using theorem 5.11 we can now understand this requirement
further.
By removing any degrees of freedom not invariant under L̂, we are forced to mixed states,
since the decomposition of L2(CGal) into irreducible representations does not contain the
trivial representation. This also shows again that a coherent perspective-neutral approach
(see section 3.5), which intrinsically needs a trivial representation subspace, requires a much
larger Hilbert space than L2(CGal).
Removing those degrees of freedom roughly speaking leaves us, with a single variable-mass
particle; this particle is what a perfect observer sees as their own reference frame. More
precisely, removing those degrees of freedom and then fixing the mass to a specific value
leaves us with a particle of that mass. This is related to the extra particle of [15].

6It is however possible to decompose any collection of massive particles, i.e. a tensor product of mass-m
representations into a direct sum of mass-m representations [41].

7One can “ignore” either of the particles by essentially removing the left or right factors in L2(CGal),
thereby obtaining a new representation space describing a single variable-mass particle; this space is consid-
ered in [39].
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6. Quantum Particles as Reference
Frames for the Galilei Group

Here we finally apply our framework to quantum particles giving rise to reference frames of
the Galilei group. In section 6.1 we overcome the problem of the mass-m representations
(5.9) being projective and thus not directly suited for a reference frame, by switching to
the centrally extended Galilei group; we will also see that quantum particles always yield
imperfect frames for Galilei transformations. Section 6.2 then considers the interesting case
where a single quantum particle can be used as a perfect reference frame for any one-
parameter subgroup of the Galilei group, and two together can theoretically yield even a
perfect frame for the whole group; we compare this to the case of a compact group, where
a system consisting of two irreducible representations does not have such power. We will
however also show that these constructions with quantum particles are unphysical, requiring
infinite energy. In section 6.3 we heuristically argue that squeezed coherent states are a good
choice for classical states, by employing weighted badness measures (recall section 2.5) and
entanglement entropy (recall section 4.5), as well as the fact that these states minimize the
Heisenberg uncertainty relation. Finally, we apply our formalism in section 6.4 to take the
view of an imperfect reference frame in a squeezed coherent state, clearly illustrating the
“fuzzy view” which we encountered in section 4.5.

6.1 Quantum Particle Galilei Frames are Imperfect

We have seen in section 5.2 that the position or momentum states of a quantum particle
cannot provide a perfect reference frame for Gal (even when ignoring the requirement of non-
projective representations), because their orbit under Gal was not an orthogonal set. We will
show here how quantum particles can be used as reference frames for Galilei transformations
and that such a reference frame will always be imperfect.

Quantum Particles as Reference Frames for Gal. Let us first sort out the technicality
of requiring non-projective representations in definitions 2.9 and 2.17 of perfect and imperfect
quantum reference frames. Mass-m representations of Gal are projective (recall proposition
5.4), and hence can neither be used as perfect nor imperfect reference frames for Gal.
We solve this issue by taking instead G = CGal, where the mass-m representations are
non-projective (recall proposition 5.10). Now any mass-m representation clearly yields an
imperfect reference frame, because states change only by a phase under θ-translations, and
classical states are thus not pairwise orthogonal.
One can however also consider whether a given set of classical states for CGal can distinguish
between the different Gal-transformations, i.e. ignoring the θ-part of the transformation.
More precisely, we call a reference frame for CGal a perfect quantum reference frame for
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Gal, if the classical states satisfy

⟨Γθ′,a′,v′ |Γθ,a,v⟩ ∝ δ(a− a′)δ(v − v′). (6.1)

Otherwise, we call the reference frame an imperfect quantum reference frame for Gal. We
will show that the mass-m representations of CGal always give rise to imperfect quantum
reference frames for Gal.

Quantum Particles Make Imperfect Frames. With the exact notion of how a mass-m
particle can be thought of as a reference frame for Gal in place, we can now show:

Proposition 6.1

Let |ψ⟩ be any state of a quantum particle of mass m, and take it as classical reference
frame state for CGal. Then the resulting reference frame will be imperfect for Gal,
i.e. (6.1) is not satisfied.

Proof. For the resulting frame to be perfect, we require

⟨ψ| Û(a, v) |ψ⟩ = 0, ∀ (a, v) ̸= (0, 0). (6.2)

This amounts to (6.1), since θ-translations act only as an additional phase. Assume towards
contradiction that (6.2) holds. Writing |ψ⟩ =

∫
dpψ(p) |p⟩ in the momentum representation,

using (5.15) from proposition 5.4, and specializing to t = 0, to find that for θ = 0 and a = 0
we must have

0 =
∫

dp dp′ ψ(p)∗ψ(p+ vm). (6.3)

Since this must be the case for all v ̸= 0, taking v ̸= 0 arbitrarily close to 0 shows that
the supports of ψ(p) and ψ(p + mv) must be disjoint; this is only possible for all v ̸= 0 if
ψ(p) ∝ δ(p − p0) for some p0 ∈ R. Thus, |ψ⟩ ∝ |p0⟩ must be a momentum eigenstate. But
then ⟨ψ| Û(a, 0) |ψ⟩ ≠ 0 for a ̸= 0, since translations only change momentum eigenstates by
a phase, see (5.13).

6.2 One-Parameter Subgroups; Pairs of Particles as Per-
fect Frames

While a single quantum particle cannot make a perfect reference frame for Gal, it can still
be used as a perfect reference frame for either boosts or translations. We consider these
cases more closely here and show that a quantum particle can even make a perfect reference
frame for any one-parameter subgroup of Gal.
We then turn to the fact that two quantum particles can make a perfect reference frame
for Gal. This for instance works if one particle is a perfect frame for boosts while the other
is a perfect frame for translations. Most generally, it is possible with the particles being
perfect frames for any two one-parameter subgroups. We will however discover that such
constructions are unphysical, requiring infinite energy. Finally, we compare the situation to
the well-known case of a compact group.
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A Perfect Reference Frame for Boosts. Let us consider the example of momentum
eigenstates as a perfect reference for boosts:

Example 6.2

Consider a quantum particle of mass m defining a reference frame for CGal with
momentum eigenstates as classical reference frame states:

|Γ0,0,0⟩ := |p0⟩ , p0 ∈ R, (6.4)
|Γθ,a,v⟩ = Ûm(θ, a, v) |Γ0,0,0⟩ = eimθ−ia(p0+mv/2) |p0 +mv⟩ . (6.5)

We wish to study the effect of jumping into this reference frame on the observed
system S (according to proposition 3.17 one may equivalently consider transforming
into this frame from another frame, but jumping is simpler).

So in the external view, let |ψ⟩ =
∫
R ψ(p) |p⟩ be an imperfect reference frame state

and ς̂S a system states. Using the completeness relation (5.32) from proposition 5.10
we see that the embedding requires the infinite normalization

r = 2π · δ(m)|0
m

⟨Γ0,0,0|Γ0,0,0⟩ , (6.6)

making Ê a formal embedding.

Take |ψ⟩⟨ψ|Ã ⊗ ς̂S as initial state, and using (4.24), jump into the frame of A (we do
not need to specify a state on B for this):

ρ̂S|R = ⟨ψ|ψ⟩
∫

CGal
dθ dadv |E(θ, a, v)|2 ÛS(θ, a, v) ς̂S Û†

S(θ, a, b), (6.7)

where

|E(θ, a, v)|2 =
∣∣ ⟨Γθ,a,v|ψ⟩

∣∣2
r ⟨ψ|ψ⟩ =

∣∣ψ(p0 +mv)
∣∣2

r ⟨ψ|ψ⟩ . (6.8)

We see that boosts are properly selected according to the momentum-space wave
function ψ(p) of the imperfect reference frame state |ψ⟩: if ψ(p) is peaked around
a momentum pR ∈ R, then the mixture of boosts will be peaked around the boost
velocity v = (pR − p0)/m. Thus, p0 essentially determines which momentum of the
reference frame state should result in the identity boost.

Boost are not the only transformations acting on S: a mixture of all translations
and θ-translations acts too. These are however completely unselected, and each
of them acts equally. This leads to a state which has been completely mixed by
translations and θ-translations. While in physical situations θ-translations often act
only as phases, thus not actually changing ς̂S , the same is not true for translations.
Unless ς̂S is translation-invariant, the unselected translations acting on S will mix
up the state to some degree and destroy information contained in it. This highlights
the fact that momentum eigenstates are completely useless at providing a reference
frame for translations, and thus jumping into such a frame is bound to cause noise.

Overall the jump is of course still unitary: Some amount of information must have
been transferred into the reference frame state itself in case of a non-translation-
invariant ς̂S . As we have remarked in theorem 4.11 only a part of that information
is accessible, while the rest is inaccessible, being stored in the exclusively perfect
degrees of freedom of the frame.
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A Perfect Reference Frame for any Given One-Parameter Subgroup. Since θ-
translations act almost trivially on single quantum particles, we directly focus on the one-
parameter subgroups of Gal and not on those of CGal. The one-parameter subgroups of
Gal are easily seen (recall (5.1)) to be the straight lines through the origin of Gal ∼= R2, and
can thus be indexed by an angle α ∈ R/πZ (note how rotating a line through the origin by
π gives again the same line). Explicitly, they are the subgroups

Gα :=
{

(s cosα, s sinα) ∈ Gal : s ∈ R
}
, α ∈ R/πZ (6.9)

with the group action obtained through restriction, and the parameter being s. We consider
one such Gα, and denote a general group element in Gα by

gα(s) := (s cosα, s sinα) ∈ Gα. (6.10)

The group action of Gα on L2(R) is then (see (5.9))

Û(gα(s)) := exp(−isĥm,α), ĥm,α := cosα p̂+ sinα k̂m, (6.11)

The generators ĥm,α of one-parameter subgroups Gα are unitarily related:

Proposition 6.3: One Parameter Subgroup Generators

The generators ĥm,α are related among each other through the one-parameter family
eiαN̂ , α ∈ R, of unitary operators:

eiαN̂ ĥm,β e−iαN̂ = ĥm,β+α, ∀α, β ∈ R, (6.12)

where one defines the “number” and ladder operators

N̂ := â†â, â := 1√
2m

(−k̂m + ip̂), â† = 1√
2m

(−k̂m − ip̂). (6.13)

This is shown in appendix A.14. Note that for t = 0, the number and ladder operators
become the usual number and ladder operators known from the quantum harmonic oscillator
[30] of frequency 1, in particular then â = (mx̂+ ip̂)/

√
2m; hence the names given to â, â†

and N̂ . This analogy with the harmonic oscillator gives us an intuition for why proposition
6.3 is true: Time evolution of a quantum harmonic oscillator is up to a phase given by the
inverse of the one-parameter family of operators defined in the proposition, with t = 0. Now
classically, the time evolution of a harmonic oscillator follows a circle (or ellipse depending
on the choice of units) around the origin of phase space. Quantum-mechanically, this is still
the case in some sense: when applying the time evolution to x̂ (or p̂), the result is a circle
(ellipse) in the plane of operators spanned by x̂ and p̂. This is essentially the mechanism
behind proposition 6.3. We chose the inverse family, since for us the opposite sense of
rotation in phase space is more practical.
Using proposition 6.3, we can construct a set of classical states forming a perfect reference
frame for any one-parameter subgroup Gα ⊂ Gal: Begin with the set of position eigenstates,
which form a perfect reference frame for translations, i.e. for the subgroup G0 generated by
ĥm,0 = p̂. Apply then eiαN̂ to this set, producing a new set {|xα⟩}x∈R := {eiαN̂ |x⟩}x∈R.
These form a perfect reference frame for Gα, because

Û(gα(s)) |xα⟩ = exp
(

− iseiαN̂ p̂ e−iαN̂)eiαN̂ |x⟩ = eiαN̂ exp
(

− isp̂
)

|x⟩
= eiαN̂ |x+ s⟩ = |(x+ s)α⟩ , (6.14)

(recall (5.12)) and ⟨xα|x′
α⟩ = ⟨x|x′⟩ = δ(x − x′) thanks to unitarity of eiαN̂ . By a similar

argument we find that the set {|xα⟩}x∈R is useless as a reference frame for the subgroup
Gα+π/2.
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To get a more general understanding of the reference frame states {|xα⟩}x∈R for Gα, we
consider the action of eiαN̂ on phase space:

Proposition 6.4

Let |ψ0⟩ be any particle state with Wigner distribution Wψ0 . Then |ψα⟩ := eiαN̂ |ψ0⟩
has the Wigner distribution

Wψα
(x, p) = Wψ0

(
x cosα+ p

m
sinα, p cosα−mx sinα

)
. (6.15)

We prove this in appendix A.15. Essentially, eiαN̂ “flows” the Wigner function anticlockwise
in phase space (from positive x to positive p) along concentric ellipses with axes parallel to the
x- and p-axes and a relative scaling of m. If we replace the p-axis by a velocity axis (i.e. scale
it by 1/m), then the ellipses become concentric circles; see figure 6.1. This is unsurprisingly
very similar to the effect of time evolution of the quantum harmonic oscillator, except that
the flow is reversed there; the quantum harmonic oscillator is remarkable in that its time
evolution in phase space matches the classical Liouville flow [30, 55]. Thus, we find that the
set {xα}x∈R are “δ-ridges” in position-velocity space which are rotated by α anticlockwise
from the velocity axis; this is also shown in figure 6.1. In phase space, they are additionally
stretched by m in p-direction and thus meet the p-axis at a different angle than α. We will
later see in section 6.4 that these states can be seen as infinitely squeezed coherent states.

α
π α

xα x′
α

u = p/m

x

Figure 6.1: The operator eiαN̂ has the effect of rotating a Wigner distribution
around the origin of position-velocity space. Shown are the Wigner distributions
of two states |xα⟩ and |x′

α⟩. They are rotated versions of position eigenstates and
part of a perfect reference frame for Gα, whose transformations shift position-
velocity space parallel to the green line. The Wigner distributions of |xα⟩ and |x′

α⟩
are completely invariant under transformations in Gα+π/2, which shift position-
velocity space parallel to the blue line.

Perfect Gal Frames from Particle Pairs. While one quantum particle cannot make a
perfect reference frame for Gal, it can make a perfect frame for any one-parameter subgroup
Gα. If this is done, then the particle cannot be used at all to distinguish transformations in
the “orthogonal” subgroup Gα+π/2, as its Wigner distribution is invariant under the action
of Gα+π/2.
However, adding another particle as a perfect reference frame for Gα′ , where α′ ̸= α, over-
comes this problem: together, the particles make a perfect quantum reference frame for Gal.
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For example, we may take one particle prepared in a momentum eigenstate as a reference
frame for boosts (Gπ/2) and the other prepared in a position eigenstate as a reference frame
for translations (G0). Abstractly, this is possible thanks to L2(Gal) ∼= L2(R) ⊗ L2(R).
This approach to perfect reference frames for Gal is not without its problems however:
a particle which is a perfect reference frame for a subgroup other than Gπ/2 will have
a Wigner distribution whose support is unbounded along the p-axis. This means that the
kinetic energy p̂2/2m of such a particle is bound to be infinite, a well-known fact for position
eigenstates (a perfect reference frame for G0). Such two-particle, perfect quantum reference
frames for Gal are theoretically admissible, but physically impossible.

Comparison to the Compact Case. Even the very fact that a perfect frame can the-
oretically be obtained using only two particles is interesting, since for a compact group G,
taking the tensor product of two irreducible representations does not yield a perfect frame.
In fact, one can show that a sure way of improving a quantum reference frame for G is to
add more irreducible representations in order to “fill out” more of L2(G) [19].
Does “filling out” L2(CGal) also provide better reference frames? For this we note that con-
sidering two particles L2(R)⊗L2(R) as a reference frame for Gal actually already goes a long
way in “filling out” L2(CGal), since our irreducible representations are infinite-dimensional,
and L2(CGal) ∼= L2(R) ⊗L2(R) ⊗L2(R). The effects of “filling out” L2(G) are thus not too
different between here and the compact case.
What is however different is the size of irreducible representations. In the compact case,
they are finite-dimensional (see appendix B.7) and thus taking a pair of e.g. spins provides
a reference frame of SU(2) which is far from perfect, simply because those spins do not fill
out L2(SU(2)) much. In our case, the irreducible representations are infinite-dimensional
and thus two of them happen to already yield very good results, at least in principle.
To summarize, the difference between the compact case and the case of Galilei transfor-
mations is the dimension of irreducible representations. The infinite-dimensional irreducible
representations of CGal provide much (infinitely) more resources than the finite-dimensional
ones in the compact case.

6.3 Choosing Classical States for Single-Particle Frames

Let us return to frames built from a single quantum particle after having briefly considered
the intricacies of perfect frames built from two particles. The main goal of this section will be
to determine good choices of classical states |Γg⟩. We will do this heuristically by taking into
account weighted badness measures as well as other criteria specifically relevant for quantum
particles. This way we will argue that coherent or more generally squeezed coherent states
are good choices for the classical states of imperfect quantum reference frames for the Galilei
group.

Weighted Badness Measures. Recall from section 2.5 that the weight Ω(g) ≥ 0 of a
weighted badness measure must be a class function, that is, it must be constant on conjugacy
classes of our group.
Since Gal is Abelian, Ω : Gal → R≥0 is simply a function on the group with no further
restriction. The centrally extended Galilei group CGal is however not Abelian. To find its
conjugacy classes, we compute using (5.27) and (5.29):

(θ′, a′, v′)−1 · (θ, a, v) · (θ′, a′, v′) = (θ + a′v − av′, a, v). (6.16)
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By varying a′ and v′ we see that the conjugacy class of (θ, a, v) is {(φ, a, v) : φ ∈ R}. This
means that for Ω to be a class function, it cannot depend on θ, but may arbitrarily depend
on a and v: Ω(θ, a, v) = Ω(a, v).
Furthermore, since θ-translations only provide a phase on states in HR̃ (see (5.31)), which
disappears due to the absolute value taken in the integrand of the badness measure, the in-
tegration

∫
dθ yields simply an unimportant multiplicative constant. Any weighted badness

measure for CGal-frames therefore essentially reduces to a weighted badness measure for
Gal-frames:

B(C,Ω) := 1
| ⟨Γe|Γe⟩ |2

∫
Gal

dgΩ(g)
∣∣ ⟨Γe| Ûm(g) |Γe⟩

∣∣2. (6.17)

Before arguing for the best classical states, let us see weighted badness measures in action
with a simple example:

Example 6.5

Take Gα to be the one-parameter subgroup of Gal, generated by cosα p̂ + sinα k̂m
as described in the previous section. If we are only interested in transformations
pertaining to Gα, then a good reference frame must only perform well for those
transformations. That is, the weight should be of the form

Ω(a, v) = δ(cosα v − sinαa) Ω̃(a, v), (6.18)

becoming zero outside Gα. For instance, if α = 0, G0 is the subgroup of translations,
and Ω(a, v) ∝ δ(v).

Even more specifically, let us take

Ω(a, v) = δ(cosα v − sinαa) = δ(s), (6.19)

where s is the parameter of Gα. Then,

B(C,Ω) = 1
| ⟨Γe|Γe⟩ |2

∫
ds
∣∣ ⟨Γe| Û(gα(s)) |Γe⟩

∣∣2. (6.20)

The integral will always contain a contribution of 1 at s = 0, irrespective of |Γe⟩. B
is thus minimal if the overlap is zero for all s ̸= 0; we would even have B = 0, since
the integral is non-zero and also finite only on a set of measure zero. The overlap is
zero for s ̸= 0 if |Γe⟩ generates a set of pairwise orthogonal classical states under the
action of Gα. Minimizing badness with a weight restricting to Gα thus leads us to
consider perfect reference frames of Gα, as expected.

We could now choose a specific weight Ω, and solve for the best wave function Γe, for instance
using variational calculus. Unfortunately, the expression quickly become complicated and
issues with integration order arise. Furthermore, choosing a weight is much too specific,
since we typically have a rough idea what comprises a “good” or “bad” reference frame in a
given situation, but this usually will not be enough to set the precise shape of Ω completely.
It would be better to consider a large family of weights Ω and then to perhaps find suitable
seed states more informally and heuristically if needed. Let us do this.
For weights, we will consider at first only rotationally symmetric weights, with a minimum
at the identity and monotonously increasing from there. This kind of weight emphasizes
large transformations over small ones. This often makes sense physically, since small changes
are harder to detect.
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Positive Wigner Functions. To assess the badness (6.17) of a reference frame generated
from |Γe⟩ heuristically, it makes sense to consider its Wigner distribution WΓe . Let us assume
that ⟨Γe|Γe⟩ = 1. Using proposition 5.5 and (5.21), the overlap in the integrand of B is

F (a, v) :=
∣∣ ⟨Γe| Û(a, v) |Γe⟩

∣∣2 = 2π
∫
R

dxdpWΓe(x, p)WΓe(x− a, p−mv). (6.21)

Note that this is always positive and∫
R

da dv F (a, v) = 2π
m

(∫
R
WΓe

(x, p)
)2

= 2π
m
. (6.22)

In order to minimize (6.17), we thus want F (a, v) to be as strongly peaked around (a, v) =
(0, 0) as possible. However, Wigner functions cannot be too strongly peaked (in both positive
and negative direction) [30], and so the same is true for F , being a kind of convolution (more
precisely, a correlation) of WΓe

with itself.
The fact that peaks in WΓe

are not arbitrarily thin combined with the normalization (5.18)
of WΓe implies that any negative part of WΓe “widens” the overall Wigner distribution,
since the negative part has to be compensated elsewhere, and neither negative nor positive
parts can be too sharp. This further implies that F is widened. If WΓe

is everywhere non-
negative, then no compensation is needed and the Wigner distribution, as well as F can be
more strongly peaked.
This heuristic argument leads us to consider only everywhere non-negative Wigner distri-
butions. As we have already mentioned in section 5.2, the pure states corresponding to
such distributions are precisely the squeezed coherent states; their Wigner distributions are
squeezed Gaussians [57].1 We will describe squeezed coherent states in more detail in the
next section.
Our Ω is rotationally symmetric, so we should further only consider rotationally symmetric
squeezed coherent states, which are precisely the coherent states known as the “most classical
states” of the quantum harmonic oscillator [30]. If we allow asymmetric Ω as in figure 2.2,
then we consider all squeezed coherent states. But as we will see, squeezed coherent states
are described by only few parameters, so solving for the best state is easy in practice.

Differential Entropy. A strongly peaked Wigner distributions WΓe
is also bound to

produce a low differential entropy H(|E|2) (recall section 4.5) when jumping into a frame
which is prepared in a classical state |Γg⟩: for then |E(g)|2 ∝ | ⟨Γe|Γg⟩ |2 = F (g), and strongly
peaked probability distributions have low entropy, as they are almost deterministic.

Minimal Uncertainty. Yet another reason to like squeezed coherent states is that they
minimize the Heisenberg uncertainty relation between the observables corresponding to the
major axes of the Wigner distribution in phase space (see next section for details). For a
squeezed coherent state |ψ⟩ aligned with x̂ and p̂ (what we will call x-p-squeezed coherent),
one for instance has ⟨∆̂x2⟩ψ · ⟨∆̂p2⟩ψ = 1/4, i.e. the uncertainty relation between position
and momentum is saturated; we will discuss this further in the next section. Non-squeezed
coherent states are rotationally symmetric in phase space and saturate thus all such uncer-
tainty relations. For this reason, non-squeezed coherent states are often thought of as the
“most classical states” a particle can be in [30].

1We will tke the squeezed coherent states to also include the special case of no squeezing, the coherent
states. Coherent states have Wigner distributions which are rotationally symmetric Gaussians.
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6.4 Quantum Particles in Squeezed Coherent States
as Imperfect Frames

We argued in the last section that squeezed coherent states are a good choice for the classical
states of an imperfect reference frame for the Galilei group built from a single quantum
particle. In this section we will thus first introduce squeezed coherent states in more detail,
then take them as classical states, and finally describe the jump into such a reference frame.
Some technical details for this section have been moved to appendix B.8.

General Squeezed Coherent States. The non-negative Wigner distributions of pure
states are generally rotated and potentially squeezed Gaussian distributions in phase space:

WΣ
x0,p0

(x, p) = 1
π

exp
[

− (x− x0, p− p0) · Σ · (x− x0, p− p0)T
]
, (6.23)

where Σ is a positive semi-definite matrix with det Σ = 1/4 [57]. x0, p0 ∈ R determine the
position of the peak of WΣ

x0,p0
.

The principal axes of Σ dictate the orientation of WΣ
x0,p0

in phase space. If they are the
x- and p-axis, then we say that WΣ

x0,p0
is an x-p-squeezed coherent state. It is enough to

understand x-p-squeezed coherent states, since all others are simply rotated versions of those
(recall the operator eiαN̂ of proposition 6.4).

x-p-Squeezed Coherent States. The x-p-squeezed coherent states have position-space
wave functions of the form [30]

ψωx0,p0
(x) := 1√

ω
√
π

exp
(

− (x− x0)2

2ω2 + ip0x

)
. (6.24)

Here, again x0, p0 ∈ R labels the position of the peak in phase space, and ω > 0 is the
so-called squeezing parameter. The corresponding momentum-space wave function is

ψωx0,p0
(p) =

√
ω√
π

exp
(

−ω2(p− p0)2

2 − ix0p+ ix0p0

)
. (6.25)

The meaning of the parameters stems from expectation values:

Proposition 6.6

⟨x̂⟩ψω
x0,p0

= x0, ⟨p̂⟩ψω
x0,p0

= p0, (6.26)

⟨∆̂x2⟩ψω
x0,p0

= ω2

2 , ⟨∆̂p2⟩ψω
x0,p0

= 1
2ω2 . (6.27)

Here,
⟨∆̂A2⟩ψ := ⟨(Â− ⟨Â⟩ψ)2⟩ψ = ⟨Â2⟩ψ − ⟨Â⟩2

ψ (6.28)

is the variance of the observable Â evaluated for the state ψ. The computations needed to
arrive at the above proposition are quite straightforward and involve at most a Gaussian
integral, so we leave them out.
Thus, ω2 is the full width of the state in position-space, while the full width in momentum-
space is 1/ω2. ω > 1 signifies that the state has been squeezed to become wider in position-
space but thinner in momentum-space; for ω < 1 the opposite occurs; for ω = 0 there is no
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squeezing and the state is rotationally symmetric in phase space. Note that

⟨∆̂x2⟩ψω
x0,p0

· ⟨∆̂p2⟩ψω
x0,p0

= 1
4 (6.29)

saturates the Heisenberg uncertainty relation

⟨∆̂x2⟩ψ · ⟨∆̂p2⟩ψ ≥ 1
4 , (6.30)

which holds for any state |ψ⟩ of our particle [30]. Conversely, the x-p-squeezed coherent
states are the only states with this property; see appendix B.8.
Allowing for non-normalizable states, we find that position and momentum eigenstates can
be seen as extreme cases of squeezed coherent states, with ω → 0 and ω → ∞ respectively:

ψ0
x0

(x) ∝ δ(x0), (6.31)
ψ∞
p0

(p) ∝ δ(p0). (6.32)

Note that p0 becomes superfluous in case of a position eigenstate and has hence been omitted
as label for the wave function; an intuitive way to see this is that ⟨∆̂x2⟩ → 0 implies
⟨∆̂p2⟩ → ∞, rendering the notion of a momentum expectation value meaningless. For the
same reason x0 becomes superfluous for momentum eigenstates.

Overlaps. For later it will be useful to compute the overlap of two squeezed coherent
states:

Proposition 6.7

〈
ψω

′

x′
0,p

′
0

∣∣ψωx0,p0

〉
=
√

2ωω′

ω2 + ω′2 exp
[
− (x0 − x′

0)2 + (ωω′)2(p0 − p′
0)2

2(ω2 + ω′2) + iφ
]
, (6.33)

φ = (p0 − p′
0) · (x0ω

′2 + x′
0ω

2)
ω2 + ω′2 .

This follows from a tedious but straightforward application of Gaussian integrals. Overlaps
of squeezed coherent states are exponentially damped with distance between their centres.
The combined squeezing (ωω′)2 enters by giving more weight to either of the two axes.

Galilei Transformations of Squeezed Coherent States. Squeezed coherent states
transform particularly nicely under the mass-m representation of the Galilei group. Namely,
they remain squeezed coherent, keep their squeezing ω, but get shifted in phase space as
(x0, p0) 7→ (x0 + a + vt, p0 + mv), all of which is an immediate consequence of proposition
5.5. In terms of states, we have

Proposition 6.8

Û(a, v)
∣∣ψωx0,p0

〉
= eiϕ ∣∣ψωx0+a+vt,p+mv

〉
, (6.34)

ϕ = −(p0 +mv/2)(a+ vt).

This follows from (5.14) and (6.24).
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Squeezed Coherent Reference Frame states. Let us use squeezed coherent states as
classical states in an imperfect reference frame R̃ embedded into a perfect frame R. For
concreteness, let us illustrate the “fuzzy view” (recall section 4.5) one sees when jumping or
transforming into an imperfect frame. For simplicity, we will take t = 0.
So let us assume that

|Γe⟩ :=
∣∣ψω0,0〉 (6.35)

is some squeezed coherent state with squeezing parameter ω, and which we sensibly centred
on the origin of phase space (transforming to a frame in this state then results in a mixture of
transformations on S, centred around the identity). Let us further assume that the reference
frame is also in a squeezed coherent state, centred on (x,mu) and squeezed by ω′:

|ψ⟩R̃ :=
∣∣∣ψω′

x,mu

〉
. (6.36)

Finally, take any state ς̂S on S and an unimportant state on B.
Jumping (or transforming) into R and obtaining ρ̂S|R, we find a mixture of transformations
Û†
S(a, v) acting on S:

ρ̂S|R ∝
∫
R dθ
r

∫
R

dadv |E(a, v)|2 Û†
S(a, v) ς̂S ÛS(a, v), (6.37)

where transformations are selected according to

|E(a, v)|2 = 1
r

∣∣∣〈Γa,v
∣∣∣ψω′

x,mu

〉∣∣∣2 = 1
r

∣∣∣〈ψωa,mv∣∣∣ψω′

x,mu

〉∣∣∣2
= 2ωω′

r(ω2 + ω′2) exp
[
− (x− a)2 + (ωω′)2m2(u− v)2

ω2 + ω′2

]
(6.38)

(recall section 4.5, and use (6.33) as well as (6.34) from the last two propositions). The
mixture of transformations is selected according to a Gaussian: ρ̂S|R contains the original
system state ς̂S , Galilei-transformed by (x, u) as most prominent contribution, with other
contributions exponentially damped as the transformations depart from (x, u). The relative
damping strength along the position and velocity axes is controlled by the combined mass
and squeezing term m2(ωω′)2; that the mass has an effect on squeezing is due to a and
v having different units. The fact that |E(a, v)|2 has a spread at all illustrates nicely the
“fuzziness” of the view in an imperfect reference frame discussed in 4.5. This is shown in
figure 6.2.
Note that the integral

∫
R dθ cancels the infinity in r, see (6.6), and the remaining prefactor

is finite, up to the normalization of the state on B. Thus, we obtain a physical result despite
the infinite factor r required for the centrally extended Galilei group. Also, we could leave
out θ as an argument to |E|2, since θ-translations provide only a phase to E and thus do
not change |E|2.

The Classical Limit. The Heisenberg uncertainty relation (6.30) dictates the spread of
squeezed coherent states; it is the reason why our frames our imperfect. But note how it is an
uncertainty relation between position x and momentum p, while the task of distinguishing
Galilei transformations is concerned with position and velocity u = p/m. The relevant
uncertainty relation is thus

⟨∆̂x2⟩ · ⟨∆̂u2⟩ ≥ 1
4m2 . (6.39)

This bound can be made arbitrarily small by increasing the mass m. We can see this in
action in expression (6.38): If we increase m, the peak in |E(a, v)|2 becomes narrower in the
v-direction; we can trade this narrowness with the a-direction by adapting the squeezing ω,
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|E(x, u)|2

a

v

(x, u)

Figure 6.2: Jumping (or transforming) into an imperfect reference frame for the
Galilei group. Here, squeezed coherent states with some fixed squeezing have been
chosen as classical states, and before the jump the reference frame is prepared
in a squeezed coherent state centred on (x, u). After the jump, the system ap-
pears transformed by a mixture of Galilei-transformations (a, v), selected accord-
ing to |E(a, v)|2. |E(a, v)|2 is a squeezed Gaussian centred on (x, u), the Galilei-
transformation expected in the case of a perfect frame.

to get an overall narrower peak in |E(a, v)|2. Thus, heavy quantum particles make for better
Galilei reference frames. In the limit m → ∞, and with arbitrarily strong squeezing our
imperfect frames become perfect.
The limit m → ∞ can be seen as a classical limit: think for instance of earth as a reference
frame with a huge mass. Classically, we thus expect perfect reference frames for velocity,
which makes sense intuitively, since an infinite mass feels no recoil. According to (6.39) we
can take ⟨∆̂x2⟩ = O(1/m) and ⟨∆̂u2⟩ = O(1/m) in the limit m → ∞ to get a perfect frame
for position and velocity; this introduces an arbitrarily high squeezing, leading to an infinite
⟨∆̂p2⟩, and fluctuations in kinetic energy:

⟨∆̂T 2⟩ = m2⟨û⟩2⟨∆̂u2⟩ = O(m). (6.40)

Interestingly, the kinetic energy fluctuates as O(
√
m), which is much smaller than the actual

kinetic energy at O(m). In this sense, the infinite squeezing is even compatible with the
above notion of a classical limit.
Note that in a fully classical theory we would expect a perfect frame for any finite m (recall
the classical example in section 5.2); there should be no uncertainties at all in position and
velocity. This is only possible if the uncertainty relation (6.39) or equivalently (6.30) is
completely removed, i.e. if ℏ → 0 (which we had set to 1).

Reference Frame in a Cat State. To close this section, let us consider |Γe⟩ =
∣∣ψ1

0,0
〉

similar to before, but take the cat state

|ψ⟩R̃ :=
∣∣ψ1
x1,mu1

〉
+
∣∣ψ1
x2,mu2

〉
(6.41)

as a reference frame state. A cat state is a simple model for a mass in spatial superposi-
tion, and thus an interesting case for low-energy quantum gravity applications. To prevent
unwieldy expressions, we set the squeezing to 1 for all states; this does not change the main
features of the result much.
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Jumping or transforming into this frame yields

|E(a, v)|2 =

1
2r ⟨ψ|ψ⟩

(
exp

[
− (x1 − a)2 +m2(u1 − v)2

2

]
+ exp

[
− (x2 − a)2 +m2(u2 − v)2

2

]
+ 2 exp

[
− (x1 − a)2 +m2(u1 − v)2 + (x2 − a)2 +m2(u2 − v)2

4

]
×

× cos
[
m

(x1 + a)(u1 − v) − (x2 + a)(u2 − v)
2

])
. (6.42)

Again, this is a tedious but straightforward computation. We observe two distinguished
Gaussian peaks around (x1, u1) and (x2, u2), as well as an oscillating interference term. In
a perfect setting, we should only expect two infinitely narrow peaks at (x1, u1) and (x2, u2).
The width of the actually observed peaks is thus a consequence of the imperfection in our
frame; it nicely illustrates the “fuzziness” described in section 4.5. The interference term is
a consequence of classical reference frame states overlapping and thus also a manifestation
of “fuzziness”, albeit a less intuitive one. In fact, this term contributes almost nothing to
the final expression: If the two peaks are remote, then the interference term is exponentially
suppressed, since (a, v) is always far away from at least one of either point (x1, u1) or (x2, u2);
if the two peaks are close, then the cosine is close to one wherever the interference term is
not strongly suppressed, and so the interference term merges into the single peak. When
the two peaks coincide, then one recovers (6.38) of course. Figure 6.3 shows |E(a, v)|2 for
the transformation into a cat state reference frame.

|E(a, v)|2

av

|E(a, v)|2

av

Figure 6.3: |E(a, v)|2 resulting from jumping (or transforming) into a superposition
of two squeezed coherent states, with no squeezing and m = 1 for simplicity; the
classical states are non-squeezed coherent states. Left: If the two states in the cat
superposition are not too close, then the result is two roughly Gaussian peaks. Each
corresponds to one term in the superposition, and their spread leads to “fuzziness”
as in figure 6.2. In a perfect frame, one would expect two perfectly sharp peaks.
Right: If the two states in the cat superposition are close to each other, the two
peaks begin to merge, and the interference term starts to show.
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7. Conclusion and Outlook

We have introduced the framework [15] of quantum reference frame transformations in a
new way, from an “observer-first” perspective. Notably, we could derive the existence of
the observer-independent external view, only by assuming that the framework should be
able to handle the act of “forgetting” an observer. We have worked with the assumption
that quantum states containing no absolute degrees of freedom have to commute with the
representation of our symmetry group, leading to a non-coherent framework of quantum
reference frame transformations. This makes our framework compatible with the rich infor-
mation theory of quantum reference frames (see e.g. [19]). It also distinguishes it from the
perspective-neutral approach (e.g. [13]), which is in a sense less general since it relies on a
coherent notion of invariant states.
We then extended the framework to include the possibility to reversibly transform between
imperfect quantum reference frames. This was achieved by embedding imperfect reference
frames into perfect ones. We saw that the additional resources of perfect reference frames
is really necessary to ensure the unitarity of transformations, even if those resources cannot
be accessed by observers. This is not surprising, since Alice might not have access to all
information required to reconstruct Bob’s point of view, if her reference frame is imperfect.
Applying our extended framework, we identify a hallmark of imperfect reference frames:
transforming into one produces a “fuzzy view” of physics, with a mixture of transformations,
in an appropriate sense centred around the transformations expected from a perfect frame,
having acted on the observed system.
Finally, we applied the extended framework to imperfect reference frames of the Galilei
group in one dimension, illustrating the “fuzzy view”. This provides a possible explanation
of what the point of view of a massive quantum particle might look like.
We have thus achieved our goal stated in the introduction: we constructed a framework to
handle reversible quantum reference frame transformations between imperfect frames, based
on a non-coherent approach. With the ability to model the point of view of massive quantum
particles, future applications in low-energy quantum gravity are imaginable: Being able to
transform into the frame of a gravitating mass in superposition may help us understand its
gravitational field, since in the frame of the mass, one could argue that the field be classical.
A very crude thought experiment in this avenue could be a continuation of the idea we
showed in figure 5.1:
Consider a Cavendish-type apparatus able to measure the gravitational force exerted by a
mass to great precision. Assume that in one frame this mass is in spatial superposition,
while the apparatus is localized (or at least, the spatial superposition of the apparatus is
insignificant compared to that of the mass). With no theory of quantum gravity we cannot
say for sure what the apparatus will read. Transforming into the frame of the mass results
in a well-localized mass, and hence a classical gravitational field, but the apparatus is found
at least in a mixture of states (in the absence of knowing the exact state structure; also,
think of the apparatus as part of the observed system S), producing a mixture of readings.
Transforming back to the frame where the apparatus was localized preserves this mixture of
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readings, if we assume the group (translations in this case) does not have any effect on the
readings but only on positions of objects. We have thus obtained a result expected from a
superposition of gravitational fields, without assuming the existence of such superpositions.
But of course, there are still open questions:
Firstly, the physical relevance of the state on an observer’s own frame is still not clear. We
have seen that it surprisingly seems to have an influence on the entanglement structure of
states seen by observers: there is a difference between leaving out the observer’s own frame
when computing reference frame transformations (as in [8]), and keeping it in place, but in a
completely mixed state of no information. Further research into the entanglement structure
of states after transformations is needed; since this issue does not hinge on the embedding,
one may for instance look to the abstract methods employed in [15] for answers.
Secondly, we do not know whether the perfect frames, into which imperfect ones are em-
bedded, are in any sense real, and one may thus similarly wonder about the external view.
We may ask: In a universe with only imperfect reference frames, who decides on the state
in the external view? And if no one can, can a consensus be reached among the imperfect
observers about which states could be the external view state describing the world?
Thirdly, our framework works well with the Galilei group and thus could provide appli-
cations to low-energy quantum gravity, essentially because Galilei transformations do not
involve transformations of time in any way. In fact, our framework treats time as absolute.
Ultimately, this would have to be changed, in order to treat e.g. the Poincaré group, but
also as a matter of principle to put time and space on equal footing. This of course would
touch on the complicated and unsolved issue of time in quantum mechanics.
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A. Proofs

We provide here proofs for some statements in the main text.

A.1 Proposition 2.25

Proof of Proposition 2.25. Because G is unimodular, we can substitute g ⇝ g′gg′−1 without
changing the Haar measure (see proposition B.3), and thus obtain

B(C,Ω0) = 1
| ⟨ψe|ψe⟩ |2

∫
G

dg dg′ Ω0(g′gg′−1)
∣∣ ⟨ψe| Û(g) |ψe⟩

∣∣2
= 1

| ⟨ψe|ψe⟩ |2
∫
G

dgΩ(g)
∣∣ ⟨ψe| Û(g) |ψe⟩

∣∣2. (A.1)

Ω is conjugation-invariant, because

Ω(g′−1gg′) =
∫
G

dg′′ Ω0(g′′g′−1gg′g′′−1) =
∫
G

dg′′ Ω0(g′′gg′′−1) = Ω(g), (A.2)

where we have used the substitution g′′ ⇝ g′′g′, which leaves the Haar measure invariant.
Every class function Ω is also a function on G, and∫

dg′ Ω(g′gg′−1) = |G| · Ω(g), (A.3)

so that we have B(C,Ω) ∝ Bconj(C,Ω) (up to a possibly infinite constant).

A.2 Theorem 3.2

Proof of Theorem 3.2. We first argue that in (a) we must have |φ′⟩AB = |g−1⟩A |φ′′⟩B for
some state |φ′′⟩B ; consequently, also |φ′⟩BA = |φ′′⟩A |g−1⟩B in equation (3.10). To show
this, we begin by noting that generally we can write

|φ′⟩AB =
∫
G

dg′ χ(g′) |g′⟩A
∣∣φ′
g′

〉
B

(A.4)

for non-zero vectors
∣∣φ′
g′

〉
B

and a function χ(g′). It then follows that

Û†
B→AÛ

†
A→B |φ⟩A |g⟩B |ψ⟩S = Û†

B→A

∫
G

dg′ χ(g′) |g′⟩A
∣∣φ′
g′

〉
B
Û†(g) |ψ⟩S

=
∫
G

dg′ χ(g′)
∣∣φ′′
g′

〉
AB

Û†(g′g) |ψ⟩S (A.5)
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for some non-zero states
∣∣φ′′
g′

〉
AB

. Consider now the case where S carries a regular repre-
sentation, such that Û†

S(g′g) = îd only if g′g = e. In order to ensure ÛB→AÛA→B = îd,
we must thus have χ(g′) = δ(gg′), i.e. |φ′⟩AB =

∣∣g−1〉
A

|φ′′⟩B with |φ′′⟩B = |φ′
g−1⟩B . This

must hold also for other systems S, due to (b). The transformation now generally takes the
form

Û†
A→B =

∫
G

dg dg′ |g−1⟩⟨g′|A ⊗ |φg,g′⟩⟨g|B ⊗ Û†
S(g), (A.6)

and |φg,g′⟩ are some unknown vectors. Since Û†
A→B is continuous, we must have that |φg,g′⟩

depends continuously on g and g′. Thanks to the principle of relativity, we further have

Û†
B→A =

∫
G

dg dg′ |φg,g′⟩⟨g|A ⊗ |g−1⟩⟨g′|B ⊗ Û†
S(g). (A.7)

Û†
A→B and Û†

B→A must both be unitary and inverses of each other. Unitary is equivalent to

ÛA→BÛ
†
A→B = îd (A.8)

and
Û†
A→BÛA→B = îd. (A.9)

Because
Û†
A→B |g′⟩A |g⟩B |ψ⟩S =

∣∣g−1〉
A

|φg,g′⟩B Û
†
S(g) |ψ⟩S , (A.10)

the first of these conditions is equivalent to

⟨φg,g′ |φg,g′′⟩ = δ(g′−1g′′), ∀ g, g′, g′′ ∈ G. (A.11)

Thus, {|φg,g′⟩}g′∈G is an orthonormal basis for every g ∈ G, with the same normalization
as the basis {|g′⟩}g′∈G. We can thus write

|φg,g′⟩ = Ŵ (g) |g′⟩ , (A.12)

where Ŵ (g) is a family of unitary operators labelled by g ∈ G. To guarantee continuity
of Û†

A→B , Ŵ (g) must depend continuously on g. This leads us to the form (3.11) of the
reference frame transformation. Using (A.6) we write the second condition as

îd =
∫
G

dg dg′ ∣∣g−1〉〈g−1∣∣
A

⊗ |φg,g′⟩⟨φg,g′ |B ⊗ îdS , (A.13)

which upon tracing out A and S is found to be equivalent to∫
G

dg′ |φg,g′⟩⟨φg,g′ | = îd, ∀ g ∈ G. (A.14)

Thanks to (A.12) and the completeness relation (2.24), this is guaranteed to hold. Unitarity
of Û†

A→B is thus equivalent to (A.12). The same is true for the unitarity of U†
B→A.

Finally, we must have that Û†
B→A = ÛA→B . Using (A.6) and taking matrix elements, this

is equivalent to
⟨g′′|φg,g′⟩ =

〈
φg−1,g′′

∣∣g′〉 , ∀ g, g′, g′′ ∈ G. (A.15)

Plugging in (A.12) yields (3.12),

Ŵ †(g) = Ŵ (g−1), ∀ g ∈ G. (A.16)
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A.3 Proposition 3.8

Proof of Proposition 3.8. (a) Complete positive follows from

2⟨ψ| 1⟨φ| G1[ρ̂] |φ⟩1 |ψ⟩2 = 1
|G|

∫
G

dg 2⟨ψ| 1⟨φ|Û1(g)ρ̂ Û†
1 (g) |φ⟩1 |ψ⟩2 ≥ 0 (A.17)

for any positive operator ρ̂ on H1 ⊗ H2, because 2⟨ψ| 1⟨φ|Û1(g)ρ̂ Û†
1 (g) |φ⟩1 |ψ⟩2 ≥ 0. To

show preservation of trace, compute

tr
(
G[ρ̂]

)
= 1

|G|

∫
G

dg tr
(
Û(g)ρ̂ Û†(g)

)
= 1

|G|

∫
G

dg tr(ρ̂) = tr(ρ̂). (A.18)

From this it also follows that

tr1
(
G1[ρ̂1 ⊗ ρ̂2]

)
= tr(G[ρ̂1]) ρ̂2 = tr(ρ̂1) ρ̂2 = tr1(ρ̂1 ⊗ ρ̂2), (A.19)

which by linearity shows the remark at the end of the proposition.
To show (b), we compute

G2 [ρ̂] = 1
|G|2

∫
G

dg′ dg Û(g′g)ρ̂ Û†(g′g) = |G|
|G|2

∫
G

dg Û(g)ρ̂ Û†(g) = G [ρ̂] , (A.20)

where we have used the left-invariance (or right-invariance) of the Haar measure.
(c) We have for all g ∈ G that

Û(g)G[ρ̂]Û†(g) = 1
|G|

∫
G

dg′ Û(gg′)ρ̂ Û†(gg′) = G[ρ̂], (A.21)

again using the invariance of the Haar measure.
(d) If ρ̂ is G-invariant, then it commutes with Û(g) for all g ∈ G, and hence G[ρ̂] = ρ̂. If
G[ρ̂] = ρ̂ then according to (c), ρ̂ must be G-invariant.
Finally, it is easily seen that the properties also hold for G1 in the way described.

A.4 Proposition 3.9

Proof of Proposition 3.9. Let us compute

U†
A→B ◦ GA[ · ] =

∫
G

dg′′
∫
G

dg dg′ ∣∣g−1〉〈g′′−1g′∣∣
A

⊗ |φg,g′⟩⟨g|B ⊗ Û†
S(g) [ · ] ×

×
∫
G

dḡ dḡ′ ∣∣g′′−1g′〉〈ḡ−1∣∣
A

⊗ |ḡ⟩⟨φḡ,ḡ′ |B ⊗ ÛS(ḡ)

=
∫
G

dg′′
∫
G

dg dg′ ∣∣g−1〉⟨g′|A ⊗ |φg,g′′g′⟩⟨g|B ⊗ Û†
S(g) [ · ] ×

×
∫
G

dḡ dḡ′ |ḡ′⟩
〈
ḡ−1∣∣

A
⊗ |ḡ⟩⟨φḡ,g′′ḡ′ |B ⊗ ÛS(ḡ). (A.22)

In the second step we have first used the left-invariance of the Haar measure to substitute
g′ ⇝ g′′g′ and ḡ′ ⇝ g′′ḡ′. On the other hand,

GB ◦ U†
A→B [ · ] =

∫
G

dg′′
∫
G

dg dg′ ∣∣g−1〉⟨g′|A ⊗ L̂B(g′′) |φg,g′⟩⟨g|B ⊗ Û†
S(g) [ · ] ×

×
∫
G

dḡ dḡ′ |ḡ′⟩
〈
ḡ−1∣∣

A
⊗ |ḡ⟩⟨φḡ,ḡ′ |B L̂

†
B(g′′) ⊗ ÛS(ḡ). (A.23)
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These two expressions must be equal. Taking general matrix elements of both expressions
shows that their equality is equivalent to∫

G

dg′′ |φg,g′′g′⟩⟨φḡ,g′′ḡ′ | =
∫
G

dg′′ L̂(g′′) |φg,g′⟩⟨φḡ,ḡ′ | L̂†(g′′) (A.24)

for all g, ḡ, g′ḡ′ ∈ G. Substituting |φg,g′⟩ = Ŵ (g) |g′⟩ leads us to∫
G

dg′′ Ŵ (g) |g′′g′⟩⟨g′′ḡ′| Ŵ †(ḡ) =
∫
G

dg′′ L̂(g′′)Ŵ (g) |g′⟩⟨ḡ′| Ŵ †(ḡ)L̂†(g′′) (A.25)

for all g, ḡ, g′, ḡ′ ∈ G. Since every operator on a reference frame is a linear combination of
various |g′⟩⟨ḡ′|, this is equivalent to (3.31),

Ŵ (g) G [ · ] Ŵ †(ḡ) = G
[
Ŵ (g) [ · ] Ŵ †(ḡ)

]
, ∀ g, ḡ ∈ G. (A.26)

A.5 Theorem 3.13

Proof of Theorem 3.13. We obtain equation (3.45) by prepending and appending U†
→A to

both sides of (3.44); (3.44) and (3.45) are thus equivalent. We reproduce the proof in [15]
to show (3.45).
Abbreviating ÛAQ :=

(
L̂A(g) ⊗ ÛQ(g)

)
, let us compute

U†
→A ◦ GRS [ · ] = 1

|G|

∫
G

dg Û†
→AÛAQ(g)[ · ] Û†

AQ(g)Û→A

= 1
|G|

∫
G

dg Û†
→AÛAQ(g)Û→A · Û†

→A[ · ] Û→A · Û†
→AÛ

†
AQ(g)Û→A (A.27)

where in the second step we introduced îd = Û→AÛ
†
→A on the left and right of [ · ]. We now

observe that

Û†
→AÛ

†
AQ(g)Û→A

=
∫
G

dg′ dg′′ |g′⟩⟨g′|A L̂A(g) |g′′⟩⟨g′′|A ⊗ ÛQ(g′−1gg′′)

=
∫
G

dg′ dg′′ |g′⟩⟨g′|gg′′⟩⟨g′′|A ⊗ ÛQ(g′−1gg′′)

=
∫
G

dg′′ |gg′′⟩⟨g′′|A ⊗ ÛQ((gg′′)−1gg′′)

=
∫
G

dg′′ L̂A(g) |g′′⟩⟨g′′|A ⊗ îdB ⊗ îdS

= L̂A(g) ⊗ îdB ⊗ îdS . (A.28)

In the last step we have used the completeness relation (2.24). Inserting this observation
into (A.27) concludes the proof.
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A.6 Proposition 3.14

Proof of Proposition 3.14. Denote by ÛQ the representation of G on Q. We compute

GQ
[
trC( · )

]
= 1

|G|

∫
G

dg dg′ ÛQ(g) ⟨g′|C [ · ] |g′⟩C Û
†
Q(g)

= 1
|G|

∫
G

dg dg′ ÛQ(g) ⟨g′|C L̂C(g)[ · ]L̂†
C(g) |g′⟩C Û

†
Q(g)

= 1
|G|

∫
G

dg dg′ ⟨g′|C
(
ÛQ(g) ⊗ L̂C(g)

)
[ · ]
(
L̂†
C(g) ⊗ Û†

Q(g)
)

|g′⟩C
= trC

(
GCQ[ · ]

)
. (A.29)

In the second line we have substituted g′ ⇝ g−1g′. Also, the resulting state will be G-
invariant by the first way of executing FC .

A.7 Proposition 3.15

Proof of Proposition 3.15. We have

U→C [ρ̂CQ|C ] =
∫
G

dg dg′ ( |g⟩⟨g|C ⊗ ÛQ(g)
)
ρ̂CQ|C

(
|g′⟩⟨g′|C ⊗ Û†

Q(g′)
)
. (A.30)

Note that if ρ̂CQ|C is G-invariant on C, i.e. ÛC(g)ρ̂CQ|CÛ†(g) = ρ̂CQ|C for all g ∈ G, we
have

⟨g|C ρ̂CQ|C |g⟩C = ⟨e|C ρ̂CQ|C |e⟩C , ∀ g ∈ G. (A.31)

Thus,
trC
(
ρ̂CQ|C

)
=
∫
G

dg ⟨g|C ρ̂CQ|C |g⟩C = |G| · ⟨e|C ρ̂CQ|C |e⟩ . (A.32)

With this in mind, let us compute:

trC
(
U→C [ρ̂CQ|C ]

)
=
∫
G

dg
(

⟨g|C ⊗ ÛQ(g)
)
ρ̂CQ|C

(
|g⟩C ⊗ Û†

Q(g)
)

=
∫
G

dg ÛQ(g) ⟨e|C ρ̂CQ|C |e⟩C Û
†
Q(g) = 1

|G|

∫
G

dg ÛQ(g)trC
(
ρ̂CQ|C

)
Û†
Q(g)

= GQ
[
trC
(
ρ̂CQ|C

)]
= FF [ρ̂CQ|C ]. (A.33)

A.8 Theorem 3.16

Proof of Theorem 3.16. Generally, we can write

V†
→A = U†

→A ◦ X, (A.34)

where X[ · ] = X̂[ · ]X̂† is a unitarity on AQ. Because V†
→A must act equally on all

subsystems of Q, and because U†
→A does so as well, X must also act on all subsystems of Q

in the same way. Now, S is a subsystem of Q, and thus X must act on all subsystems of Q
as it acts on S. From theorem 3.2 we know that the transformation U†

A→B can only act on
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S through the representation ÛS . Any additional action of X̂ on S cannot change this. It
follows that X̂ must be of the form

X̂ =
∫
G

dg X̂A(g) ⊗ ÛQ(g), (A.35)

with X̂A(g) a family of operators on A. Thus, the action of Û†
A→B decomposes as follows:

X̂ applies unitaries ÛQ(g) on Q, selected by the elements X̂A(g), then Û†
→BÛ→A is applied,

before T̂ABX̂†T̂AB applies unitaries once more, this time selected according to the state of
B. Take for instance the action on |g0⟩A |e⟩B |ψ⟩S for g0 ∈ G:

X̂ |g0⟩A |e⟩B |ψ⟩S =
∫
G

dg X̂A(g) |g0⟩A |g⟩B ÛS(g) |ψ⟩S (A.36)

and thus

U†
→BÛ→AX̂ |g0⟩A |e⟩B |ψ⟩S =

∫
G

dg
∣∣g−1〉

A
R̂†
B(g)X̂B(g) |g0⟩B |ψ⟩S (A.37)

where we have used the form (3.15); X̂B(g) is X̂A(g) acting on B instead of A. Applying
T̂ABX̂

†T̂AB completes the action of Û†
A→B :

Û†
A→B |g0⟩A |e⟩B |ψ⟩S =

∫
G

dg dg′′ ∣∣g′′−1g−1〉
A
X̂†
B(g′′)R̂†

B(g)X̂B(g) |g0⟩B Û
†
S(g′′) |ψ⟩S .

(A.38)
We can also compute this directly using theorem 3.2, yielding

Û†
A→B |g0⟩A |e⟩B |ψ⟩S = |e⟩A Ŵ (e) |g0⟩B |ψ⟩S . (A.39)

Comparing (A.38) and (A.12) and remembering that g0 ∈ G was arbitrary shows that we
must have

X̂†
B(g′′)R̂†

B(g)X̂B(g) = 0 (A.40)

if g′′ ̸= e or g ̸= e. Let us assume that X̂B(g) ̸= 0 for some g ̸= e. But since R̂†
B(g) is

unitary and since the supports of all X̂†
B(g′′) together must be HB (otherwise X̂ would not

be unitary), we see that (A.40) could then not be satisfied. Hence,

X̂B(g) = 0, ∀ e ̸= g ∈ G. (A.41)

But X̂B(g) was just X̂A(g) acting on B instead of A, so we must also have that X̂A(g) = 0
for all e ̸= g ∈ G. Thus, in (A.35) only the term g = e survives, and

X̂ = X̂A ⊗ îdQ, (A.42)

where X̂A is a unitary on A. More precisely, we must have X̂A(g) = δ(g)X̂A in (A.35). This
shows the first statement in the theorem.
From this, compatibility of forgetting observers and jumping follows, because X̂A is a local
unitary and thus does not have any influence after A is traced out. Explicitly:

FA ◦ X† = G ◦ trA ◦ X† = G ◦ trA = FA, (A.43)

and hence trC ◦ G ◦ U→A = trC ◦ U→A ◦ GA = FA = FA ◦ X†. If now V→A ◦ GA = G ◦ V→A,
then

FA = trC ◦ G ◦ U→A ◦ X = trC ◦ G ◦ V→A = trC ◦ V→A ◦ GA. (A.44)
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A.9 Proposition 3.17

Proof of Proposition 3.17. The remark on GA is a straightforward consequence of proposi-
tion 3.8, with H1 = HA. Also, it is clear from the form requirements of jumps and reference
frame transformations that these results must also hold if we switch the roles of Alice and
Bob. Let us thus focus on (3.56).

Acting with trA on U†
→A [ · ] (recall (3.18)) gives

trA ◦ U†
→A [ · ] =

∫
G

dg
(

⟨g|A ⊗ L̂†
B(g) ⊗ Û†

S(g)
)

[ · ]
(

|g⟩A ⊗ L̂B(g) ⊗ ÛS(g)
)
. (A.45)

Also applying trB is easy, because

trB
(
L̂†
B(g)ρ̂ABSL̂B(g)

)
= trB

(
ρ̂ABS

)
, ∀ g ∈ G. (A.46)

Thus, we arrive at the right-hand side of (3.56).
Similarly, we find (recall (3.19))

trB ◦ U†
B→A[ · ] =

∫
G

dg
(

⟨g|A ⊗ T̂AR̂
†
B(g) ⊗ Û†

S(g)
)

[ · ]
(

|g⟩A ⊗ R̂B(g)T̂ †
A ⊗ ÛS(g)

)
, (A.47)

where T̂A maps B to A. Applying trA then results again in the right-hand side of (3.56).

A.10 Proposition 4.2

Proof of Proposition 4.2. Using the fact that any vector in HR can be expanded in terms of
δ-distributions, a general homomorphism Ê : HR̃ → HR is of the form

Ê =
∫
G

dg |g⟩⟨αg| , (A.48)

where |αg⟩ are not necessarily normalized vectors. For this to work we must allow for the
possibility of |αe⟩ being non-normalizable too, thus |αe⟩ ∈ H̄R̃; essentially, linearity of Ê
dictates only that ⟨αg| acting on the input to Ê must be linear, prompting us to include
distributions as candidates for |αe⟩.
The condition (4.7) contracted with ⟨g′| on the left gives ⟨αg′ | ÛR̃(g) =

〈
αg−1g′

∣∣, that is

|αg′g⟩ = Û†
R̃

(g′−1) |αg⟩ = ÛR̃(g′) |αg⟩ . (A.49)

Hence,
|αg⟩ = ÛR̃(g) |αe⟩ , (A.50)

and the form (4.8) follows.
It is a well-known fact from linear algebra that Â†Â = îd for any linear map Â if and only
if Â is an isometry. Thus, (4.9) is indeed equivalent to Ê(αe) being an isometry. To show
(4.10), we compute

Ê†(αe)Ê(αe) =
∫
G

dg′ dg |αg⟩⟨g′|g⟩ ⟨αg| =
∫
G

dg |αg⟩⟨αg|

=
∫
G

dg ÛR̃(g) |αe⟩⟨αe| Û†
R̃

(g), (A.51)

where we have used the orthogonality of perfect reference frame states (2.23).
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A.11 Proposition 4.7

Proof of Proposition 4.7. Consider first the case where Ê is non-formal. ÊÊ† is an orthog-
onal projector, because it is Hermitian, and Ê†Ê = îdR̃ shows

(ÊÊ†)2 = ÊÊ†ÊÊ† = ÊÊ†. (A.52)

For |ψ⟩R̃ ∈ HR̃ it holds that
ÊÊ†Ê |ψ⟩R̃ = Ê |ψ⟩R̃ , (A.53)

hence ÊÊ† acts as the identity when restricted to im(Ê). Let |φ⟩R ∈ im(Ê)⊥ lie in the
orthogonal complement of im(Ê), and let |χ⟩R ∈ HR. We then find

⟨χ|R ÊÊ† |φ⟩R =
(
ÊÊ† |χ⟩R , |φ⟩R

)
= 0, (A.54)

with ( · , · ) the scalar product on HR, because ÊÊ† |χ⟩R ∈ im(Ê). Thus, ÊÊ† projects onto
im(Ê). Consequently, a state ρ̂R of the perfect frame is an embedded imperfect frame if and
only if

E ◦ E† [ρ̂R] = ρ̂R. (A.55)

Turn now to the case where Ê is formal. Thanks to (4.13) it still holds that ÊÊ†Ê = Ê,
and so ÊÊ† acts as the identity on the image of Ê. From this also follows that if E ◦ E† does
not act as the identity on ρ̂R, then ρ̂R cannot be an embedded imperfect state.

A.12 Proposition 5.4

Proof of Proposition 5.4. (a) From the canonical commutation relation (5.4) we straightfor-
wardly find [p̂, k̂m] = im · îd.
(b) Clearly, Ûm is unitary as an exponential of i times a Hermitian operator; it remains to
show that it is projective. Recall the simple case of the Baker-Campbell-Hausdorff identity
(see e.g. [60]): for operators Â and B̂ such that [Â, [Â, B̂]] = [B̂, [Â, B̂]] = 0 it holds that

eÂ+B̂e[Â,B̂]/2 = eÂeB̂ . (A.56)

We apply it to Â = −i(a′p̂+ v′k̂m), B̂ = −i(ap̂+ vk̂m), and thus, using (a),

[Â, B̂]
2 = − ima′v

2 + imav′

2 , (A.57)

to obtain

Ûm(a′ + a, v′ + v) exp
(

im2 (av′ − a′v)
)

= exp
(

−i
[
(a+ a′)p̂+ (v + v′)k̂m

])
exp

(
im2 (av′ − a′v)

)
= exp

(
−i
[
a′p̂+ v′k̂m

])
exp

(
−i
[
ap̂+ vk̂m

])
= Ûm(a′, v′)Ûm(a, v). (A.58)

(c) Denote by Ûm and Ûm′ the mass-m and mass-m′ representation. Assume towards con-
tradiction that there exists a unitary operator V̂ such that for every g ∈ G

V̂ Ûm(g)V̂ † = Ûm′(g). (A.59)
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This must in particular hold for the one-parameter subgroups Ûm(a, 0) = exp(−iap̂) and
Ûm(0, v) = exp(−ivk̂m), and their m′-conterparts respectively. Taking the derivatives
d/da|a=0 and d/dv|v=0 respectively yields

V̂ p̂V̂ † = p̂ (A.60)

and
V̂ k̂mV̂

† = k̂m′ . (A.61)

These imply
im · îd = V̂ (im · îd)V̂ † = V̂ [p̂, k̂m]V̂ † = [p̂, k̂m′ ] = im′ · îd, (A.62)

which in turn implies m = m′, a contradiction. Such a unitary V̂ cannot exist, and the two
representations are inequivalent.
(d) We first compute the actions of pure translations and boosts on position and momentum
states, and then use (b) to derive actions of general Galilei transformations. The simplest
of the four cases is

Ûm(a, 0) |p⟩ = e−iap̂ |p⟩ = e−iap |p⟩ . (A.63)

Using (5.7) we find

⟨p| Ûm(a, 0) |x⟩ = ⟨p| e−iap̂ |x⟩ = e−iap ⟨p|x⟩ = e−i(a+x) p
√

2π
= ⟨p|x+ a⟩ , (A.64)

which through completeness of the improper momentum basis implies

Ûm(a, 0) |x⟩ = |x+ a⟩ . (A.65)

Because k̂m = p̂t − mx̂ is the sum of two terms whose commutator is proportional to the
identity, we can use the formula (A.56) to write

Ûm(0, v) = e−ivtp̂eimvx̂eimv2t/2 = e−imvx̂e−ivtp̂e−imv2t/2. (A.66)

With this and employing (5.7) we find

⟨p| Ûm(0, v) |x⟩ = e−ivtpeimvxeimv2t/2 ⟨p|x⟩ = eimvxeimv2t/2 ⟨p|x+ vt⟩ , (A.67)

and hence
Ûm(0, v) |x⟩ = eimvxeimv2t/2 |x+ vt⟩ . (A.68)

Similarly,

⟨x| Ûm(0, v) |p⟩ = e−ivtpeimvxe−imv2t/2 ⟨x|p⟩ = e−ivtpe−imv2t/2 ⟨x|p+mv⟩ , (A.69)

and thus
Ûm(0, v) |p⟩ = e−ivtpe−imv2t/2 |p+mv⟩ . (A.70)

Using (b) it is now possible to compute

Ûm(a, v) |x⟩ = eimav/2Ûm(a, 0)Ûm(0, v) |x⟩ = eimav/2eimvxeimv2t/2 |x+ a+ vt⟩
= eimv (x+a/2+vt/2) |x+ a+ vt⟩ . (A.71)

Similarly, we find

Ûm(a, v) |p⟩ = e−imav/2Ûm(0, v)Ûm(a, 0) |p⟩ = e−imav/2e−ivtpe−imv2t/2e−iap |p+mv⟩
= e−i(a+vt)(p+mv/2) |p+mv⟩ . (A.72)
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(e) Using (d), we see that |ψ⟩ =
∫
R ψ(x) |x⟩ is mapped into

|ψ′⟩ =
∫
R
ψ′(x) |x⟩ := Ûm(a, v) |ψ⟩ =

∫
R
ψ(x) eimv (x+a/2+vt/2) |x+ a+ vt⟩ . (A.73)

Taking the scalar product with ⟨x| we find that the transformed wave function is

ψ′(x) = ψ(x− a− vt) eimv (x−a/2−vt/2). (A.74)

A similar argument works for the momentum-space wave function.
(f) Let us write |ψ⟩ =

∫
R dp ψ̃(p) |p⟩ and then compute∫

R
da dv Ûm(a, v) |ψ⟩⟨ψ| Û†

m(a, v)

=
∫
R

dadv dpdp′ ψ̃(p)ψ̃(p′)∗ e−i(a+vt)(p−p′) |p+mv⟩⟨p′ +mv|

= 2π
∫
R

dv dp |ψ̃(p)|2 |p+mv⟩⟨p+mv| = 2π
∫
R

dp dp̄ |ψ̃(p)|2 1
m

|p̄⟩⟨p̄|

= 2π
m

îd
∫
R

dp |ψ̃(p)|2 = 2π
m

⟨ψ|ψ⟩ · îd. (A.75)

In the first equality, we used (5.13), in the second
∫
R da exp(−iaq) = 2πδ(q), and in the

third we performed the substitution v ⇝ p̄ = p+mv.
Employing proposition 2.22, we see that Û is irreducible. And from proposition 4.4 it then
follows that |ψ⟩ can be rescaled into a valid seed state for an embedding.

To see the significance of the time-dependent boost generator, consider the action of the
boost Ûm(0, v) on the time-dependent momentum state |p(t)⟩ = e−ip2t/2m |p⟩:

Ûm(0, v) |p(t)⟩ = e−i(mv)2t/2m−ivpt−ip2t/2m |p+mv⟩ = e−i(mv+p)2t/2m |p+mv⟩
= |(p+mv)(t)⟩ . (A.76)

So the time-dependence in k̂m is necessary to provide the correct energy (frequency) to the
resulting state, such that the time-independent Schrödinger equation is conserved under
the action of the boost. The mass-m representation even conserves the time-dependent
Schrödinger equation [30].

A.13 Proposition 5.10

Proof of Proposition 5.10. (a) Clearly, Ûm(θ, a, v) is unitary, as eimθ is a complex phase and
Ûm(a, v) is unitary according to proposition 5.4 (b). We compute

Ûm(θ′, a′, v′) Ûm(θ, a, v) = exp (im(θ′ + θ)) exp
(

im2 (av′ − a′v)
)
Ûm(a′ + a, v′ + v)

= Ûm

(
θ′ + θ + av′ − a′v

2 , a′ + a, v′ + v

)
= Ûm

(
(θ′, a′, v′) · (θ, a, v)

)
, (A.77)

and so the representation is non-projective.
(b) If Ûm(θ, a, v) were not irreducible, there would exist a true and non-trivial invariant sub-
space of L2(R). But this subspace would in particular be invariant under all transformations
of the type Ûm(0, a, v) = Ûm(a, v). This is impossible, because the mass-m representation
of Gal is irreducible according to proposition 5.4 (f). Hence, Ûm(θ, a, v) must be irreducible.
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(c) Equivalence of Ûm(θ, a, v) and Ûm′(θ, a, v) for m ̸= m′ would imply equivalence of the
mass-m and mass-m′ representation of Gal by specifying θ = 0. This is impossible according
to 5.4 (c). Thus, Ûm(θ, a, v) and Ûm′(θ, a, v) must be inequivalent.
(d) This differs from the completeness relation in proposition 5.4 (e) only by an additional
integral ∫

R
dθ eimθe−imθ =

∫
R

dθ = δ(m)|0. (A.78)

A.14 Proposition 6.3

Proof or Proposition 6.3. From (6.13) and (5.10) it follows that

[â, â†] = 1, [N̂ , â] = −â, [N̂ , â†] = â†. (A.79)

The two families eiαN̂ â e−iαN̂ and e−iαN̂ â of operators, indexed by α ∈ R, agree for α = 0,
and their derivatives with respect to α are equal at α = 0, thanks to the above commutation
relations. Because they also satisfy the group property, it follows from proposition A.1 below
that the families are equal. Thus, it also holds that

eiαN̂ â e−iαN̂ = e−iαâ, (A.80)

and
eiαN̂ â† e−iαN̂ = eiαâ†. (A.81)

With p̂ = −i
√
m/2 (â− â†) and k̂m = −

√
m/2 (â+ â†) we find

eiαN̂ p̂ e−iαN̂ = −i
√
m/2

(
e−iαâ− eiαâ†)

=
√
m/2

(
−i cos(−α) â+ sin(−α) â+ i cos(α) â† − sin(α) a†)

= cosα p̂+ sinα k̂m = ĥα. (A.82)

This implies that ĥm,α = cosα p̂+ sinα k̂m also satisfies the group property:

eiN̂α ĥm,β e−iN̂α = ĥm,β+α. (A.83)

Proposition A.1: One-Parameter Groups of Operators

Let Vα, α ∈ R, be a family of operators satisfying the group property:

V̂β · V̂α = V̂β+α, ∀α, β ∈ R. (A.84)

Then V̂α satisfies the linear, first-order ODE

d
dβ V̂β = V̂β · d

dαV̂α
∣∣∣
α=0

(A.85)

and is thus uniquely determined by V̂0 and d
dα V̂α

∣∣
α=0.
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Proof. It holds that
d

dβ V̂β = d
dαV̂β+α

∣∣∣
α=0

= V̂β · d
dαV̂α

∣∣∣
α=0

, (A.86)

which is a linear, first-order ODE, if a value for d
dα V̂α

∣∣
α=0 is given. By uniqueness of ODE

solutions [61], V̂β is then uniquely determined by the initial value V̂0.

A.15 Proposition 6.4

Proof of Proposition 6.4. To keep the notation simple, we will write ψα as ψ, and thus
|ψ⟩ := eiαN̂ |ψ0⟩, with Wigner distribution Wψ. We will also need

N̂ = p̂2

2m +mx̂2 − 1
2 , (A.87)

which follows from (6.13). The last term only contributes a phase in |ψ⟩, and since Wigner
distributions are insensitive to overall phases, we may ignore it. We now compute

∂

∂α
Wψ(x, p) = im

4π

∫
R

dy
[
(x̂2ψ)(x− 1

2y)ψ∗(x+ 1
2y) − ψ(x− 1

2y)(x̂2ψ)∗(x+ 1
2y)
]
eipy

+ i
4mπ

∫
R

dk
[
(p̂2ψ̃)(p− 1

2k)ψ̃∗(p+ 1
2k) − ψ̃(p− 1

2k)(p̂2ψ̃)∗(p+ 1
2k)
]
e−ikx. (A.88)

Here we have used (5.20) in order to split the integration into a part in position-space and
a part in momentum space. The position-space part is

im
4π

∫
R

dy
[
(x− 1

2y)2ψ(x− 1
2y)ψ∗(x+ 1

2y) − ψ(x− 1
2y)(x+ 1

2y)2ψ∗(x+ 1
2y)
]
eipy

= − imx
2π

∫
R

dy y ψ(x− 1
2y)ψ∗(x+ 1

2y) eipy = −mx ∂
∂p
Wψ(x, p). (A.89)

Similarly, one finds that the momentum-space part is

p

m

∂

∂x
Wψ(x, p), (A.90)

yielding
∂

∂α
Wψ(x, p) = p

m

∂

∂x
Wψ(x, p) −mx

∂

∂p
Wψ(x, p). (A.91)

This is a partial differential equation for Wψ, with α playing the role as time (note also that
it strongly resembles the so-called quantum-Liouville equation for the harmonic oscillator,
which describes time evolution in phase space [30, 55]).
One checks that

Wψ(x, p) := Wψ0

(
x cosα+ p

m
sinα, p cosα−mx sinα

)
(A.92)

solves the equation:

∂

∂α
Wψ(x, p) = ∂1Wψ0(x, p) ·

(
−x sinα+ p

m
cosα

)
+ ∂2Wψ0(x, p) · (−p sinα−mx cosα)

= −mx ∂
∂p
Wψ(x, p) + p

m

∂

∂x
Wψ(x, p). (A.93)
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B. Details on Various Topics

B.1 Basics of Haar Measures

We give here an overview of Haar measures on a Lie group G, without proofs. As in the
main text, let G be a Lie group, i.e. a group which is also a smooth manifold such that the
group multiplication and inverse are smooth maps. In particular this means that G is locally
compact and Hausdorff [33]. If not indicated otherwise, all definitions and statements of
this appendix are taken from [34]; one also finds there the proofs which we omitted here.

Definition B.1: Haar Measures and Unimodularity

A positive regular Borel measure µL on G which is left-invariant, i.e. for every mea-
surable E ⊂ G and every g ∈ G we have

µL(gE) = µL(E), ∀E ⊂ G measurable, ∀ g ∈ G, (B.1)

is called a left Haar measure.

If µR is a positive regular Borel measure which is right-invariant, i.e.

µR(Eg) = µR(E), ∀E ⊂ G measurable, ∀ g ∈ G, (B.2)

then µR is called a right Haar measure.

G is called unimodular, if every left Haar measure is also a right Haar measure.

The existence and uniqueness of Haar measures is the content of Haar’s theorem:

Theorem B.2: Haar’s Theorem

µL and µR exist and are unique up to positive multiplicative constants.

If G is unimodular, we will always work with µR = µL; also, we then have further useful
properties:

Proposition B.3: Haar Measure Properties for Unimodular Groups

Let µ be a Haar measure in the case where G is unimodular (thus µ is a left and
right Haar measure). µ is then invariant under inversion,

µ(E−1) = µ(E), ∀ E ⊂ G measurable, (B.3)

as well as invariant under conjugation,

µ(g−1Eg) = µ(E), ∀ E ⊂ G measurable, ∀ g ∈ G. (B.4)
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Conjugation invariance is a simple consequence of combined left- and right-invariance, while
inversion invariance requires the introduction of the modular function.
Finally, it is easy to see that Abelian Lie groups G are unimodular, since left-translation is
equal to right-translation by the inverse.
We can define integration with respect to Haar measures (

∫
G

dµL(g) or
∫
G

dµR(g)) in the
usual sense of measure theory. If not specified further, we use a left Haar measure and write

dg := dµL(g). (B.5)

Due to proposition B.3 we have in the unimodular case that integrals
∫
G

dg f(g) of functions
f are invariant under the substitutions g ⇝ g−1 and g ⇝ g′gg′−1 for every g′ ∈ G. The
total measure of G is

|G| := µL(G) =
∫
G

dg, (B.6)

and has the following property:

Theorem B.4: Finiteness of Total Measure

|G| < ∞ if and only if G is compact.

B.2 δ-Distributions on Lie Groups

We turn here to the technical details around δ-distributions on G, in particular needed
for constructing the perfect quantum reference frame in theorem 2.16. For this we first
generalize the representation (2.11) on L2(R) to square-integrable functions in L2(G,µL)
and/or L2(G,µR) (definitions 2.12 and 2.13), and then introduce a notion of δ-distributions
on G, analogous to position states |x⟩ in the context of L2(R).
Intuitively, −a has to be replaced by g−1 with g ∈ G; this is not trivial, since G is not
necessarily Abelian: both ψ(g′) 7→ ψ(g−1g′) and ψ(g′) 7→ ψ(g′g−1) for functions G ∋ g′ 7→
ψ(g′) ∈ C and g ∈ G are a priori possibilities. But upon closer inspection only the first
option is also a representation, leading us to discard the second. The first option is the
so-called left-regular representation. If ψ is a function, we denote by L̂(g)ψ the result of
acting on it with the left-regular representation of g ∈ G.
If ψ is square-integrable, then so should L̂(g)ψ for all g ∈ G. But since µL is only guaranteed
to be left-invariant and µR only guaranteed to be right-invariant, we can only be sure that
L̂(g)ψ ∈ L2(G,µL) if ψ ∈ L2(G,µL), but not that L̂(g)ψ ∈ L2(G,µR) if ψ ∈ L2(G,µR).
This means that the left-regular representation is only well-defined on L2(G,µL). It is not
hard to see that there it conserves scalar products (2.15) and is thus a unitary representation
as in definition 2.7.
It is possible to define the so-called right-regular representation R̂(g) on L2(G,µR) as
ψ(g′) 7→ ψ(g′g). If ψ ∈ L2(G,µR), then R̂(g)ψ ∈ L2(G,µR), and R̂ is unitary. In ex-
ample 2.8 the right-regular representation would be ψ(x) 7→ ψ(x+ a).
Overall, this results in definition 2.13.
From definition 2.15 it follows that:

Proposition B.5: δ-Distributions as Generalized Functions

Thinking of δc as functions to be integrated against in the sense of (2.20), it holds
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that

δg(g′) =
{
δ(g−1g′) if µ = µL,

δ(g′g−1) if µ = µR.
(B.7)

L̂ and R̂ act on δ-distributions as if they were functions, by transforming the argu-
ments as g′ 7→ g−1g′ and g′ 7→ g′g respectively. In the same context, we can allow
integrations of δg’s against each other to extend the scalar product (2.15). This
results in

⟨g′|g⟩ = ⟨g|g′⟩ =
{
δ(g′−1g) = δ(g−1g′) if µ = µL,

δ(g′g−1) = δ(gg′−1) if µ = µR.
(B.8)

It is possible to expand a square-integrable function ψ as

|ψ⟩ =
∫
G

dµ(g)ψ(g) |g⟩ , (B.9)

and one has the completeness relation∫
G

dµ(g) |g⟩⟨g| = îd, (B.10)

where dµ(g) = dµL(g) or dµ(g) = dµR(g). If G is unimodular (and µL = µR is
chosen), then both notions of δ-distributions coincide.

Proof. Treating integration against δ-distributions semantically as integration of regular
functions, we get∫

G

dµL(g′) δg(g′)ψ(g′) = ψ(g) =
∫
G

dµL(g′) δ(g′)ψ(gg′) =
∫
G

dµL(g′) δ(g−1g′)ψ(g′),
(B.11)

where we have used left-invariance of µL in the last step. Similarly,∫
G

dµR(g′) δg(g′)ψ(g′) = ψ(g) =
∫
G

dµR(g′) δ(g′)ψ(g′g) =
∫
G

dµR(g′) δ(g′g−1)ψ(g′),
(B.12)

using right-invariance of µR in the last step. Since these equations hold for every test
function ψ, we have shown (B.7).
Furthermore,

⟨g′|g⟩ =
∫
G

dµL(g′′)δ(g′−1g′′)δ(g−1g′′) =
{∫

G
dµL(g′′)δ(g′′)δ(g−1g′g′′) = δ(g−1g′)∫

G
dµL(g′′)δ(g′−1gg′′)δ(g′′) = δ(g′−1g)

(B.13)
Here, the upper equality results from substituting g′′ ⇝ g′g′′, and the lower from g′′ ⇝ gg′′.
Similarly, one shows the case with dµR: the substitutions are now g′′ ⇝ g′′g′ and g′′ ⇝ g′′g.
We have thus shown (B.8).
Let |ψ⟩ and φ be square-integrable. Compute(∫

G

dµ(g′)ψ∗(g′) ⟨g′|
)(∫

G

dµ(g)φ(g) |g⟩
)

=
∫
G

dµ(g′) dµ(g)ψ∗(g′)φ(g)
{
δ(g′−1g)
δ(gg′−1)

}
=
∫
G

dµ(g′) dµ(g)ψ∗(g′)
{
φ(g′g)
φ(gg′)

}
δ(g)

=
∫
G

dµ(g′)ψ∗(g′)φ(g′) = ⟨ψ|φ⟩ . (B.14)
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Here the upper expressions correspond to µ = µL and the lower to µ = µR. Similarly, we
can show that

⟨g′|
∫
G

dµ(g)ψ(g) |g⟩ = ψ(g′). (B.15)

This shows that the decomposition |ψ⟩ =
∫
G

dµ(g′)ψ(g′) |g⟩ is compatible with the bra-ket
notation of square-integrable functions.
The completeness relation now follows easily: let |ψ⟩ be a square-integrable function (or
even a δ-distribution), and compute(∫

G

dµ(g) |g⟩⟨g|
)

|ψ⟩ =
∫
G

dµ(g) |g⟩ψ(g) = |ψ⟩ . (B.16)

In the unimodular case, both notions of square-integrable functions coincide, and hence also
the δ-distributions. Note that as a consequence, δ(g−1g′) = δ(g′g−1) for all g, g′ ∈ G; it is
also possible to demonstrate this directly using left- and right-invariance of dg.

B.3 Formal Infinities

We have argued in section 2.4 that certain imperfect quantum reference frames of non-
compact groups might need infinite normalization constants. We then outlined how we can
introduce such formally infinite constants by treating them as symbols which are compatible
with the arithmetic of complex numbers. In this appendix we will make this precise.
Given an algebraic field F and a symbol α, one can consider the field of rational expressions
in α [62]:

F(α) :=
{
f(α)/g(α) : f(α), g(α) ∈ F[α], g(α) ̸= 0

}
, (B.17)

and F[α] is the ring of polynomials in α with coefficients in F. Multiplication and division,
as well as integer powers, are defined via multiplication of polynomials. Together with the
addition and subtraction of polynomials, one can define the sum and differences of rational
functions. Roughly speaking, this is why F(α) is again a field. Note that F is contained in
F(α) as the subset of constant rational expressions, i.e. those which do not contain α. It is
possible to consider F(α, β, γ, . . . ) for an arbitrary finite number of symbols.
Given a F-vector space V, we can define a much larger vector space

Vα,... := spanF(α,... ) BV , (B.18)

defined as the F(α, . . . )-vector space generated from any basis BV (not a Hilbert basis) of
V. Because F ⊂ F(α, . . . ), we also have V ⊂ Vα,.... Since any other basis B′

V is a finite
linear combination of elements in BV , and since F is contained in F(α, . . . ), we see that the
construction of Vα,... is independent of basis chosen.
In our case, F = C is the field of complex numbers, and α, β, etc. are formal infinities we wish
to incorporate into complex number arithmetic. The arithmetic structure inherent in C(α)
provides precisely what we outlined in section 2.4: rational functions in formal infinities are
a number system allowing for formal infinities. The vector spaces we are concerned with
are typically rigged Hilbert spaces H ⊂ H, with the scalar product of H extended to some
states of H (for instance, H = L2(G), with δ-distributions in L2(G)). To complete our
treatment of formal infinities, we should really work with the vector space Hα,... instead of
H, although we are not as pedantic about this detail in the main text. The scalar product
of H, which was already extended to parts of H, can now be extended to parts of Hα,...,
simply by demanding it to be C(α, . . . )-linear. That is, essentially demanding that one can
pull out formal infinities from the scalar product.
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B.4 L- and R-Invariant States for Non-Abelian Groups

We saw that the reference frame transformations of example 3.3 do not satisfy (3.30) if G is
not Abelian. Technically however, (3.30) must only hold when applied to quantum states,
i.e. operators which are Hermitian and positive (we allow non-normalizable states, so there
is no condition on the trace). We will now take a closer look at this example and show that
if G is not Abelian, then there are quantum states for which (3.30) is violated.
Instead of testing (3.31), we now investigate (3.30) directly. One can show that the trans-
formation of example 3.3 satisfies

U†
A→B ◦ GA = GRB ◦ U†

A→B , (B.19)

where GRB is the G-twirl on B with respect to the right-regular representation R̂B , which,
although not corresponding to the chosen canonical representation of G, is also available
on L2(G).1 To see this, we can retrace the steps in the proof of proposition 3.9 to find
that GRB ◦ U†

A→B [ · ] equals (A.23) but with L̂B replaced by R̂B , and use that R̂(g′′)
∣∣g−1〉 =∣∣g′−1g′′−1〉 =

∣∣(g′′g′)−1〉. To summarize: U†
A→B maps states which are invariant under L̂ (we

also say left-invariant) to states which are invariant under R̂ (right-invariant). Prepending
and appending U†

B→A to (B.19) further yields

U†
B→A ◦ GRB = GA ◦ U†

B→A, (B.20)

so the inverse transformation maps right-invariant states to left-invariant states. From this
it follows that it is possible to find a left-invariant state ρ̂′ such that U†

A→B is any right-
invariant state ρ̂ (simply take ρ̂′ := U†

B→A[ρ̂]). Thus, the reference frame transformations
in example 3.3 satisfy (3.30) if and only if every right-invariant state is also left-invariant.
If G is Abelian, then this is the case, because R̂(g′) |g⟩ =

∣∣gg′−1〉 =
∣∣g′−1g

〉
= L̂†(g′) |g⟩,

and since the Haar measure is inversion-invariant, we have G = GR. If the group is non-
Abelian, as is for instance the case with the centrally extended Galilei group, then the
situation is more complicated, and it is possible to find states which are right-invariant but
not left-invariant:

Proposition B.6

Let g ∈ G/Z(G) be a group element not in the centre Z(G) of G. The state

ρ̂RL := GR
[
(|e⟩ + |g⟩)(⟨e| + ⟨g|)

]
(B.21)

is then right-invariant, but not left-invariant.

Analogously one obtains a left-invariant but not right-invariant state ρ̂LR by replacing
GR with G.

Proof. Thanks to inversion invariance of the Haar measure, we can write2

ρ̂RL = 1
|G|

∫
G

dg′ ( |g′⟩ + |gg′⟩
)(

⟨g′| + ⟨gg′|
)
. (B.22)

Acting with L̂(g′′) for g′′ ∈ G on this state we obtain

ρ̂′′
RL := L̂(g′′)ρ̂RLL̂†(g′′) = 1

|G|

∫
G

dg′ ( |g′′g′⟩ + |g′′gg′⟩
)(

⟨g′′g′| + ⟨g′′gg′|
)
. (B.23)

1With the same notation, the G-twirl using the left-regular representation would be GL := G, but we will
simply write G.

2Using inversion invariance, we rewrite g′ ⇝ g′−1 for better clarity. The argument however does not
depend on this rewriting and works regardless.
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We thus have

⟨e| ρ̂RL = 1
|G|
(
2 ⟨e| + ⟨g| +

〈
g−1∣∣ ) (B.24)

⟨e| ρ̂′′
RL = 1

|G|
(
2 ⟨e| +

〈
g′′gg′′−1∣∣+

〈
g′′g−1g′′−1∣∣ ). (B.25)

Since g ∈ G/Z(G), one can always choose g′′ ∈ G such that g′′gg′′−1 ̸= g. And since the
function g′′ 7→ g′′gg′′−1 is continuous (courtesy of group multiplication and inversion being
continuous if G is a Lie group), we can find a g′′ such that g′′gg′′−1 ̸= g is arbitrarily close
to g (in terms of the topology on G), therefore certainly also g′′gg′′−1 ̸= g−1, and thus
g′′g−1g′′−1 ̸= g.
For such a choice of g′′ we obtain

⟨e| ρ̂RL |g⟩ = δ(e)
|G| ̸= 0 = ⟨e| ρ̂′′

RL |g⟩ , (B.26)

and thus
ρ̂RL ̸= ρ̂′′

RL (B.27)
showing that ρ̂RL is not left-invariant. For ρ̂LR the argument is analogous.

This result shows that for non-Abelian G, example 3.3 cannot be reconciled with the require-
ment (3.30). Note that the same is true for any family of reference frame transformations
satisfying (B.19), i.e. all those which map left-invariant states to right-invariant ones, and
vice-versa. Because of that, we will not pursue such examples further.
Note that for compact groups it is possible to see the existence of states which are right-
invariant but not left-invariant directly from the decomposition of the regular representation
into irreducible representations of finite dimension, see appendix B.7.

B.5 Traces and Entropies

The completeness relation B.10 allows us to write the partial trace over a Hilbert space of
square-integrable functions in a particularly nice way.
For this we first define what we mean by partial trace:

Definition B.7: Partial Trace

Let HX and HY be Hilbert spaces, and let {|i⟩}i be a countable basis of HY . Let
ÂX ⊗ ÂY : HX ⊗ HY → HX ⊗ HY be a separable operator (if in any given situation
we are not considering rigged Hilbert spaces and the larger spaces do not exist, we
simply take HX ⊗ HY = HX ⊗ HY ). The partial trace of ÂX ⊗ ÂY over HX is

trX
(
ÂX ⊗ ÂY

)
:= ÂY

∞∑
i=1

⟨i| ÂX |i⟩ . (B.28)

For a general operator Â : HX ⊗ HY → HX ⊗ HY the partial trace is the linear
extension of the above operation, and we may write

trX
(
Â
)

:=
∞∑
i=1

⟨i| Â |i⟩ (B.29)

in slight abuse of notation. We allow partial traces to be formally infinite.
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An important case, and the main reason for this appendix, will be the trace over Hilbert
spaces of square integrable functions on G:

Proposition B.8: Partial Trace over L2(G)

If HX is either L2(G,µL) or L2(G,µR), then for an operator Â : HX ⊗ HY →
HX ⊗ HY ,

trX(Â) =
∫
G

dµ(g) ⟨g| Â |g⟩ . (B.30)

This is similar to how one can take traces in L2(R) by integrating over the position eigenstate
expectation values.
Proof.∑

i

⟨i| Â |i⟩ =
∫
G

dµ(g)
∑
i

⟨i|g⟩⟨g| Â |i⟩ =
∫
G

dµ(g) ⟨g| Â
∑
i

|i⟩⟨i|g⟩ =
∫
G

dµ(g) ⟨g| Â |g⟩ .

(B.31)

Definition B.7 and proposition B.8 can easily be adapted to the trace instead of the partial
trace, by taking HY = C.
An important application of the trace is in the definition of entropy. We adapt the usual
definition (see [45]) to accommodate non-normalizable states:

Definition B.9: von Neumann Entropy

For a not necessarily normalized state σ̂ on a Hilbert space H, i.e. σ̂† = σ̂ and σ̂ ≥ 0,
we define the (von Neumann) entropy as

H(σ̂) := −tr
(
σ̂

tr σ̂ log2
σ̂

tr σ̂

)
. (B.32)

We use the convention that 0 · log2 0 = 0, which is consistent with x 7→ x log2 x being
continuously extended for x → 0.

Clearly, this definition matches the usual definition H(σ̂) = −tr
(
σ̂ log2 σ̂

)
in the case where

the state is normalized to tr σ̂ = 1.
To see that the adapted entropy is indeed useful, let us compute it for a couple of non-
normalizable states. Especially useful for us will be linear combinations of δ-distributions
on a unimodular Lie group G:

Example B.10

Let G be unimodular.
(a) The pure (improper) state |g⟩⟨g|, g ∈ G, satisfies tr(|g⟩⟨g|) = δ(e). When acting

on operators, log2 is defined by acting on eigenvalues in a diagonal form of its
argument. With this we find the entropy to be

H(|g⟩⟨g|) = −
∫
G

dg′ ⟨g′| |g⟩⟨g|
δ(e) log2

|g⟩⟨g|
δ(e) |g′⟩ = 1

δ(e) log2(1) ⟨g| |g⟩⟨g|
δ(e) |g⟩

= 1 · log2(1) = 0. (B.33)

As expected, the entropy of the state is zero.
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(b) Take the equally pure state |ψ⟩ = (|g1⟩ + |g2⟩)/
√

2 for g1, g2 ∈ G, g1 ̸= g2. The
trace of the corresponding density operator σ̂ is also δ(e). We have, formally
speaking,

log2
|ψ⟩⟨ψ|
δ(e) = log2(1) |ψ⟩⟨ψ|

δ(e) + log2(0)(|g1⟩ − |g2⟩)(⟨g1| − ⟨g2|)
2δ(e) + log2(0) · Â,

(B.34)
where Â is an unimportant self-adjoint operator which annihilates both |g1⟩
and |g2⟩. The integral

∫
G

dg′ in the expression for the entropy forces g′ = g1 or
g′ = g2, so that we obtain effectively the trace over a two-dimensional subspace:

H(σ̂) = −1
4 log2(0) · tr

(
1 1
1 1

)(
1 −1

−1 1

)
= 1

4 log2(0) · tr
(

0 0
0 0

)
= 0.

(B.35)
Note that all factors of δ(e) have cancelled thanks to ⟨g|g′⟩ = δ(g−1g′). As
expected, the entropy is again zero.

The same holds for other finite superposition of δ-states.

(c) Consider finally the mixed state σ̂ = (|g1⟩⟨g1| + |g2⟩⟨g2|)/2 with trace δ(e). We
have

log2
ρ̂

δ(e) = log2

(
1
2

)
1
δ(e) (|g1⟩⟨g2| + |g2⟩⟨g2|) + log2(0) · Â, (B.36)

where Â is as in the above example. Thus, again keeping track of factors of
δ(e), we get

H(σ̂) = −1
2 log2

(
1
2

)
· tr
(

1 0
0 1

)
= − log2

(
1
2

)
= 1. (B.37)

As expected the entropy is one bit, corresponding to a “yes/no” probability
distribution with equally likely outcomes.

B.6 Haar Measures for the Galilei Groups

Let µn be the Lebesgue measure on Rn, i.e. the measure obtained through Lebesgue inte-
gration. We will show that µ2 is a left- and right Haar measure for Gal = Gal(1), and that
µ3 is a left- and right Haar measure for CGal = CGal(1). We then fix the Haar measures
used in the main text.
As claimed in the main text, Gal is unimodular with Haar measure equal to µ2:
Proof of Proposition 5.2. Gal is Abelian and hence unimodular. Note then that the left
action of g = (a, v) ∈ Gal on any measurable set B ⊂ R2 ∼= Gal is simply a translation
by (a, v) in R2. This evidently leaves µ2(B) invariant, showing that µ2 is a left Haar
measure.

We will always use µ2 as a Haar measure for Gal and write dg = dµ2(g). If now f : Gal → C
then we can perform the integral∫

Gal
dµ2(g) f(g) =

∫
dadv f(a, v) (B.38)
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over translations and boosts separately. This particularly implies that

δ
(
(a, v)

)
= δ(a)δ(v), (B.39)

where the δ-distribution on the left-hand side is to be understood in the sense of definition
2.15, and the two δ-distributions on the right-hand side are the usual δ-distributions on R.
The total measure of the group is

|Gal| =
∫

da dv = ∞. (B.40)

It is infinite, Gal being non-compact, in line with theorem B.4.
Similarly, CGal is unimodular with µ3 as Haar measure:
Proof of Proposition 5.8. The left group action of g = (θ, a, v) ∈ CGal on a measurable
subset B ⊂ R3 ∼= CGal induces a translation of B in R3 by (θ, a, v), and a translation in
the θ-direction linearly depending on a and v. The former translation clearly keeps µ(B)
invariant (by the same argument as for Gal). The latter translation introduces a linear shear
along θ, i.e. a rectangular box in θ-a-v space is deformed into a prism. In general, this does
not change µ(B) according to Cavalieri’s principle (which holds more generally for Lipschitz
continuous shears). Thus, µ3 is a left Haar measure. Similarly, we can show that it is a
right Haar measure, making CGal unimodular (note that CGal is not Abelian).

We always use µ3 as Haar measure for CGal and write dg := dµ3(g), i.e. d(θ, a, v) = dθ dadv,
and δ

(
(θ, a, v)

)
= δ(θ)δ(a)δ(v). Accordingly, |CGal| = ∞ (CGal is non-compact). Note

however that we will have to distinguish the infinities |Gal| and |CGal|.
Finally, we note that the Haar measures of Gal and CGal are inversion- and conjugation-
invariant, thanks to proposition B.3.

B.7 Representation Theory of Compact Groups

The central result in the representation theory of compact topological groups is the Peter-
Weyl theorem [41]. A form of the theorem useful for applications in quantum reference
frames is:

Theorem B.11: Peter-Weyl: Representation Theory of Compact Groups

(a) One can decompose
L2(G) ∼=

⊕
q

Hq ⊗ H∗
q , (B.41)

where the index q ranges over the equivalence classes of finite-dimensional,
irreducible representations Ûq of G, Hq is the representation space of the q-th
representation, and H∗

q is its complex conjugate.

(b) The left-regular representation L̂ on L2(G) acts as the q-th irreducible repre-
sentation on Hq and trivially on all H∗

q , i.e.

L̂ =
⊕
q

Ûq ⊗ îdq. (B.42)

(c) The right-regular representation R̂ on L2(G) acts as the complex conjugate of
the q-th irreducible representation on H∗

q and trivially on all Hq, i.e.

R̂ =
⊕
q

îdq ⊗ Û∗
q . (B.43)
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Accordingly, the Hq are also called the left subspaces, and the H∗
q the right

subspaces.

(d) Let {|q, x⟩}x be an orthonormal basis of Hq, and denote by

D(q)
xy (g) := ⟨q, y| Ûq(g) |q, x⟩ (B.44)

the matrix elements of the irreducible representation labelled by q. With this
it is possible to write the improper basis of δ-distributions as

|g⟩ =
∑
q,x,y

√
dim Hq

|G| D(q)
x,y(g) |q, x, y⟩ , |q, x, y⟩ := |q, x⟩Hq

|q, y⟩H∗
q
. (B.45)

Note that because G is compact, |G| < ∞.

The Peter-Weyl theorem is usually stated in a different form, in terms of the matrix elements
D

(q)
xy (g) [41]. This is however equivalent to the decompositions of the Hilbert space in (a)

and of the representations in (b) and (c) [44]. (a) - (c) is equivalent to (d), see e.g. [23].
See also the applications of the theorem in [13, 15, 19, 20]. In quantum physics, we often
call the index q the charge of the corresponding irreducible representation. E.g. for SU(2),
the charge is the total spin j. The spaces Hi and H∗

i are also called the colour and flavour
subspaces [23].

B.8 Squeezed Coherent States

We provide here some details left out in section 6.4.

Heisenberg Uncertainty. Any state |ψ⟩ of our quantum particle satisfies the Heisenberg
uncertainty relation (6.30). This is a special case of the more general uncertainty relation
[30]

⟨∆̂A2⟩ψ⟨∆̂B2⟩ψ ≥ 1
4
∣∣⟨[Â, B̂]⟩ψ

∣∣2 (B.46)

valid for any two observables Â and B̂.
The general Heisenberg uncertainty relation (B.46) is commonly proved by considering the
Hermitian operators ∆̂A := Â− ⟨Â⟩ψ îd, ∆̂B := B̂ − ⟨B̂⟩ψ îd, and computing

∣∣⟨[Â, B̂]⟩ψ
∣∣ =

∣∣⟨[∆̂A, ∆̂B]⟩ψ
∣∣ =

∣∣∣ ⟨ψ| ∆̂A†∆̂B |ψ⟩ − ⟨ψ| ∆̂B†∆̂A |ψ⟩
∣∣∣

≤ 2
∣∣∣ ⟨ψ| ∆̂A†∆̂B |ψ⟩

∣∣∣ ≤ 2
√

⟨ψ| ∆̂A†∆̂A |ψ⟩
√

⟨ψ| ∆̂B†∆̂B |ψ⟩. (B.47)

In the first step we have used that îd commutes with every other operator, and in the second
step, that ∆̂A and ∆̂B are Hermitian. The first inequality is the triangle inequality, in the
form |z − z∗| ≤ 2|z| for any z ∈ C, here with z = ⟨ψ| ∆̂A†∆̂B |ψ⟩. The second inequality
is the Cauchy-Schwarz inequality in the form | ⟨ϕ|ϕ′⟩ | ≤

√
⟨ϕ|ϕ⟩

√
⟨ϕ′|ϕ′⟩ for any two states

|ϕ⟩ and |ϕ′⟩, here with |ϕ⟩ = ∆̂A |ψ⟩ and |ϕ′⟩ = ∆̂B |ψ⟩. The inequality (B.46) follows
by squaring both sides of (B.47) and using that ⟨ψ| ∆̂A†∆̂A |ψ⟩ = ⟨ψ| ∆̂A2 |ψ⟩ = ⟨∆̂A2⟩ψ,
according to the definition (6.28).
It will be important to note the conditions under which (B.46) holds with equality. For this,
both inequalities employed in the proof must hold with equality. The triangle inequality
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becomes an equality if z∗ = −z, i.e. if z ∈ iR, that is if

⟨ψ| ∆̂B†∆̂A |ψ⟩ ∈ iR. (B.48)

The Cauchy-Schwarz inequality holds with equality if |ϕ⟩ and |ϕ′⟩ are collinear, that is if
there exist α, β ∈ C not both zero, such that

α∆̂A |ψ⟩ = β∆̂B |ψ⟩ . (B.49)

With this second condition, the first condition (B.48) simplifies to

αβ∗ ∈ iR. (B.50)

Squeezed Coherent States Uniquely Saturate Heisenberg Unertainty. Writing
|ψ⟩ =

∫
dxψ(x) |x⟩ in position space, the conditions (B.49) and (B.50) required for equality

in the uncertainty relation (6.30) become

α(x− x0)ψ(x) = β(−i∂x − p0)ψ(x), αβ∗ ∈ iR, (B.51)

where x0 and p0 are the position and momentum expectation values of |ψ⟩. Solving this
differential equation gives

β lnψ(x) = iα (x− x0)2

2 + βip0x+ C, (B.52)

where C ∈ C is an integration constant.
We will for now assume that α and β are both non-zero, but come back to the cases α = 0
and β = 0 later. This allows us without loss of generality to take β = 1 and α = i/ω2, with
ω2 ∈ R (the reason for the square will become clear shortly). This yields

ψ(x) = eC exp
(

− (x− x0)2

2ω2 + ip0x

)
. (B.53)

Note that in order for ψ to remain finite at infinity requires ω2 > 0, so we will assume this
from now on (this also explains the square in our notation). We then choose exp(C) > 0
such that the state is normalized, i.e. ⟨ψ|ψ⟩ =

∫
dx |ψ(x)|2 = 1, and obtain the family of

normalized x-p-squeezed coherent wave-functions:

ψωx0,p0
(x) := 1√

ω
√
π

exp
(

− (x− x0)2

2ω2 + ip0x

)
. (B.54)

This is (6.24) in the main text and shows that squeezed coherent states are the only proper
states which saturate (6.30).
Let us now recover some of the cases which we excluded earlier. Firstly, it makes little
sense to include states with ω < 0, since they exponentially diverge towards infinity, and we
would expect ψ(x) (and ψ(p)) to at least remain finite for |x| → ∞ (|p| → ∞ respectively).
Secondly, the case α = 0 can be reached by the limit ω → ∞, most easily computed in
momentum space to yield a momentum eigenstate centred on p0:

lim
ω→∞

ψωx0,p0
(p) ∝ δ(p0). (B.55)

Thirdly, the case β = 0 can be reached by the limit ω → 0; we see that this results in a
position eigenstate centred on x0:

lim
ω→0

ψωx0,p0
(x) ∝ δ(x0). (B.56)

These are (6.32) and (6.31) in the main text. Finally, we may always add a phase to any of
the wave functions without changing the fact that their states are squeezed coherent; this
completely restores the freedom in choosing C.
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